Задача Коши для уравнения теплопроводности

Задача Коши для уравнения теплопроводности

Задача Коши для уравнения теплопроводности

Задача Коши для уравнения теплопроводности

Задача Коши для уравнения теплопроводности

Задача Коши для уравнения теплопроводности

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

Рассмотрим однородное уравнение теплопроводности отвечающее случаю . отсутствию источников. Задача Коши ставится так: найти функцию t), удовлетворяющую уравнению и начальному условию Задача Коши для уравнения теплопроводности Физический смысл задачи состоит в определении температуры однородного бесконечного стержня в любой момент времени по известной его температуре в момент времени . Считается, что боковая поверхность стержня теплоизолирована, так что через нее тепло из стержня не уходит.

Предположи м, что достаточно гладкие функции, убываююте при х2 +t2 +00 настолько быстро, что сущ ествуют преобразования Фурье 2) законны операции дифференцирования Тогда, применяя преобразование Фурье к обеим частям уравнения (1) и условию (2), от задачи (1)-(2) перейдем к задаче Коши для обыкновенного дифференциального уравнения (величина £ играет роль параметра). Решение задачи (5)-(6) имеет вид Ранее мы установили, что где преобразование Фурье функции .

Отсюда, полагая t = получаем Таким образом, в правой части равенства (7) стоит произведение преобразований Фурье функций Пользуясь теоремой о свертке, в силу которой равенство (7) можно представить в виде Левая часть формулы (8) есть преобразование Фурье (по аргументу х) искомой функции и(х, t) , так что формулу (8) можно переписать так: откуда, пользуясь выражением для свертки функций 4>(х) ие Л, имеем Полученная формула дает решение исходной задачи (1)-(2) и называется интегралом Пуассона.

В самом деле, можно доказать, что для любой непрерывной и ограниченной функции ip{x) функция u(x}t), определяемая формулой (9), имеет производные любого порядка по х и по t при t > 0 и удовлетворяет уравнению (1) при t > 0 и Vx. Покажем, что функция удовлетворяет начальному условию . Положим Тогда так что откуда при получим так как Сформулируем следующий важный результат. Теорема 1. В классе ограниченных функций решение задачи Кош и (1)-(2) единственно и непрерывно зависит от начальной функции. Пример.

Найти решение задачи Коши Задача Коши для уравнения теплопроводности А Пользуясь формулой Пуассона (9), получаем Прообразуем интеграл в правой чести.

Имеем Сделаем замену переменного Тогда интефал в правой части последнего равенства примет вид Из формулы (и) (Здесь мы воспольэов опись тем, что получаем, что / Таким образом, решение поставленной задачи о предел и тся формулой Лелю видеть, что построен ноя функция u(x,f) удовлетворяет начальному условию (2'). Непосредственной проверкой легко убедиться в том, что ата фуниция при удовлетворяет уравнение SautWtl. Из формулы Пуассона (9) следует, что тепло расоросграня ется вдоль стержня мгновенно.

Возможно вам будут полезны данные страницы:

Применение законов динамики. Законы динамики
Сущность метода сечений (РОЗУ)
Основные надписи на чертежах ГОСТ
Корректность постановки задачи. Пример Адамара некорректно поставленной задачи

Действительно, пусть начальная температура ) положительна для и равна нулю вне этого отрезка. Тогда для последующего распределения температур получаем откуда видяо, что при сколь угодно малых t > 0 и сколь угодно больших |х| имеем tt(x,t) > 0. Это обьяс кяется неточностью теоретических предпосылок при выводе уравнения теплопроводности , не учитыва юших инерциальн ость движе ния молекул. Тем не менее, уравнение тепло про водности дает хорошее количественное согласование с опытом. Более точное описание процессов переноса тепла дается так называемыми уравнениями переноса. 2.1.

Фундаментальное решение уравнения теплопроводности Функция входящая в формулу Пуассона (9), называется фундаментальным решением уравнения теплопроводности. Рассматриваемая как функция аргументов х, t, она удовлетворяет уравнению щ = а2ихх, в чем можно убедиться непосредственной проверкой. Фундаментальное решение имеет важный физический смысл, связанный с понятием теплового импульса. Допустим, что начальное распределение ip(x) температур таково:

Тогда в силу (9) распределение температур и, в стержне будет иметь вид По теореме о среднем где имеем Переходя в последнем равенстве к пределу при е -* 0, получим Это означает, что функция G(x, t\ хо) представляет распределение температур в стержне в момент t > 0, если в начальный момент t = 0 в точке х = Хо имелся бесконечный пик температур (при е -* 0 функция 4>е{х) +оо), а в остальных точках стержня температура была равна нулю.

Такое начальное распределение температур

может быть приближенно реализовано следующим образом: в момент t = 0 к точке х = Хо стержня на очень короткий промежуток времени подносится узкое пламя очень высокой температуры (тепловой импульс плотности ср). Это начальное распределение температур описы вается так называемой 6 - функцией Дирака, обозначаемой символом 6(х - Хо).

Не являясь функцией в обычном смысле, б-функция определяется формально при помощи соотношений на любом интервале (а, Р), содержащем точку хо Основным свойством, определяющим б-функцию, является следующее: для всякой непрерывной функции f(x) Таким образом, фундаментальное решение G(x, t\xq) является решением уравнения теплопроводности в бесконечном стержне при начальном распределении температуры График функции G(x}t;xa) при в различных значениях t > Оимеетвид (рис. 1).

Кривые 1, 2, 3 соответствуют моментам времени • Рисунок показывает, каквыравнива-ется температура в стержне после теплового импульса. Решение Задача Коши для уравнения теплопроводности задачи теплопроводности в бесконечном стержне при начальном условии можно рассматривать как результат суперпозиции температур, возникающих в точке х в момент времени t вследствие непрерывно распределенных по стержню тепловых импульсов интенсивности у>(Л) в точке Л, приложенных в момент t = 0.