Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

Вынужденные колебания струны закрепленной на концах. Задача Штурма—Лиувилля

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

Рассмотрим колебания однородной струны длины I, закрепленной на концах, под действием внешней силы /(ж, t), рассчитанной на единицу длины. Эта задача приводит к решению уравнения Будем искать решение u(z, t) этой задачи в виде суммы где v(x, t) — решение неоднородного уравнения удовлетворяющее граничным условиям и начальным условиям решение однородного уравнения удовлетворяющее фаничным условиям и начальным условиям Вынужденные колебания струны закрепленной на концах.

Общая схема метода Фурье Задача Штурма—Лиувилля Решение v(x, t) представляет вынужденные колебания струны, т. е. такие колебания, которые совершаются под действием внешней возмущающей силы когда начальные возмущения отсутствуют, а решение представляет свободные колебания струны, т. е. такие колебания, которые происходят только вследствие начальных возмущений.

Метод нахождения свободных колебаний w(x, t) был изложен ранее, так что остается только найти вынужденные колебания решение неоднородного уравнения (5)-(7). Применим метод разложения по собственным функциям, который является одним из мощных методов решения неоднородных линейных уравнений с частными производными.

Основная идея метода состоит в разложении внешней силы f(x, t) в ряд по собственным функциям {Х„(ж)} соответствующей однородной краевой задачи и нахождении откликов uk(x,t) системы на воздействие каждой компоненты /*(*) Хк(х)- Суммируя все такие отклики, получим решение исходной задачи Решение v(x, t) задачи (5)-(7) будем искать в следующем виде: Здесьэш -[-х — собственныефункции однородной краевой задачи, и граничные условия (6) выполняются автоматически.

Определим функции (так, чтобы функция v(x> t) удовлетворяла уравнению(5) и начальным условиям (7). Подставив v{x,t) в виде (11) в уравнение (5), получим Разложим функцию f(x,t) в интервале (О, /) в ряд Фурье по синусам (собственным функциям) Сравнивая разложения (12) и (13) для одной и той же функции , получим дифференциальные уравнения для неизвестных функций Тк{1).

Чтобы решение v(x, t), определяемое рядом (11), удовлетворяло нулевым начальным условиям (7), достаточно подчинить функции ) условиям Действительно, полагая в (11) t = 0, получим Дифференцируя (11) по t и полагая t = 0, найдем, что . Пользуясь методом вариации постоянных, получим, что решения уравнений (15) при начальных условиях (16) имеют вид где fk{t) определяются по формулам (14).

Подставив найденные выражения для Tt(t) в ряд (11), получим решение t) задачи (5)-(7), если ряд (11) и ряды, полученные из него почленным дифференцированием по х и по t дважды , сходятся равномерно. Как можно показать, такая сходимость рядов будет обеспечена, если функция /(х, t) непрерывна, имеетнепрерывные частные производные по а; до второго порядка включительно и для всех значений t выполняется условие.

Тогда решение и(х, t) исходной задачи (1)-(3) представляется в виде где функции Tk(t) определяютс я по формулам (17), а Пример. Решить смешанную задачу Начальные возмущения отсутствуют, так что мы имеем «чистую- задачу на вынужденные «лебэния однородной струны длины *, закрепленной на концах. Система функций {sin nz) есть ортогональная на (0,*) система собственных функций краевой задачи здесь. Ищем решение задачи (1)-(3) а виде неизвестные функции.

Возможно вам будут полезны данные страницы:

Исследование функций одной переменной
Группы самосовмещений многоугольников и многогранников
Теорема о делении с остатком
Метрические характеристики графа

Подставляя в форме ( в уравнение (1), получим отхуда легко усматриваем, что Используя формулу (4), в силу начальных условий (3) получаем откуда Таким образом, для T|(f) имеем Выпишем общее решение уравнения (8) Потребовав выполнение начальных условий (9), находим так что Для n ^ 2 имеем откуда Пользуясь формулой (4), для решения u(x,f) исходной задачи получаем следующее выражение: § 6. Вынужденные колебания струны с подвижными концами Рассмотрим вынужденные колебания однородной струны длины I под действием внешней силы /(х, t), рассчитанной на единицу длины, причем концы струны не закреплены, а двигаются по заданному закону.

Эта задача приводится к решению уравнения при граничных условиях и начальных условиях К решению этой задачи метод Фурье непосредственно неприменим, т. к. граничные условия (2) неоднородны. Однако эта задача легко сводится к задаче с нулевыми (однородными) граничными условиями. Действительно, введем вспомогательную функцию Легко видеть, что Таким образом, функция и(х, t) на концах отрезка /удовлетворяетусловиям(2),авнутри этого отрезка она линейна по х (рис. 8).

Говорят, что функция продолкает граничные условия в интервале Решение задачи (1)43) ищем в виде суммы где v(x, t) — новая неизвестная функция. В силу выбора функции и(х} t) функция ш удовлетворяет нулевым граничным ус- Рис. 8 ловиям и начальным условиям Подставив уравнение (1), получим . или, учитывая выражение для a>(x,t), где Таким образом, при приходим к смешанной задаче с нулевыми граничными условиями для функции найти решение уравнения удовлетворяющее граничным условиям и начальным условиям.

Метод решения таки х задач был изложен ранее. Пример. Решить смешанную задачу ^ Граничные условия неоднородные (концы струны подвижные). Здесь =. Вводим вспомогательную функцию Решение исходной задами будем искать в виде где v(x,t) — новая неизвестная функция. Для нее получаем уравнение граничные условия начальные условия Зада ча (6)-(8) имеет очеандиое решение , и, как ясно из физических соображений, это ее единственное решение.

Тогда по формуле (5) получаем решение u(x,t) исходной задачи §7.

Общая схема метода Фурье Рассмотрим в области дифференциальное уравнение (уравнение колебаний неоднородной струны длины i), где так что уравнение (1) является уравнением гиперболического типа в области Q. Предположим, что и займемся изучением смешанной задачи для уравнения (1) при однородных гранич-ных условиях Вынужденные колебания струны закрепленной на концах Общая схема метода Фурье Задача Штурма—Лиувилля где а, р, у, 6 — некоторые постоянные, причем (Напомним, что задача называется однородной, если, наряду с решением и этой задачи, ее решением является также си, где с — произвольная постоянная.)

Возможны гран ичные условия слото ших типов: (струна с закрепленными концами (рис. 9 а)); (струна со свободными концами (рис.(упруго закрепленные концы (рис. 9 в)). Числа Лю, Л| должны быть положительными, если положение покоя есть положение устойчивого равновесия. Ограничившись для простоты случаем струны с закрепленными концами, приходим к следующей задаче: найти решение и(х, t) уравнения (о удовлетворяющее граничным условиям и начальным условиям (3) ыо Будем решать эту задачу методом Фурье.

1. Ищем нетривиальные решения уравнения (1), удовлетворяющие граничным условиям (2), в виде произведения Подставляя и(х, t) в форме (4) в уравнение (1), получим или Левая часть последнего равенства зависит только от х, а правая часгь — только от t, и равенство возможно л ишь тогда, когда общая величина отношений (5) будет постоянной.

Обозначим эту постоянную через (-А). Тогда из равенства (5) получим два обыкновенных дифференциальных уравнения Чтобы получитьнетривиальные решения уравнения (1) вида (4), удовлетворяющие граничным условиям (2), необходимо, чтобы функция Х(х) была нетривиальным решением уравнения (7), удовлетворяющим граничным условиям Как мы уже видели, эта задача имеет отличное от тождественного нуля решение не при всяком А.

Задача Штурма—Лиумиим о собственных значениях: найти такие значения параметра X, при которых существуют нетривиальные решения уравнения (7), удовлетворяющие граничным условиям (8), а также сами эти решения. Те значения параметра А, при которых задача (7)-(8) имеет нетривиальное решение, называютс я собственными значениями (числами), а сами эти решения — собственными функциями, огвечающими данному собственному значению.

Совокупность всех собственных значений называется спектром данной задачи. В силу однородности уравнения (7) и граничныхусловий (8) собственные функции определяюгся с точностью до постоянного множителя. Выберем этот множитель так, чтобы (9) Собственные функции, удовлетворяющие условию (9), будем называть нормированными с весом р(х). Установим некоторые общиесвойствасобственныхзначений и собственныхфунк-ций задачи Штурма—Лиувилля. Теорема 3.

Каждому собственному значению с точностью до постоянного множителя отвечает лишь одна собственная функция. М В самом деле, пусть существуют две собственные функции и отвеча- ющие одному и тому же собственному значению Ао, т.е. удовлетворяющие дифференциальному уравнению (7) при одном и том же А = Ао- Так как по предположению Х)(0) = 0, Хг(0) = 0, то определитель Вронского "HxiS Щ решений Х](х) и уравнения (7) в точке ж = 0 обращается в нуль и, следовательно, решения Xi(x) и Х2(х) линейно зависимы.

Теорема 4. Собственные функции, отвечающие различным собственным значениям, ортогональны на отрезке [0, /) свесом р(х), где Хт(х), Хп(х) — собственные функции, соответствующие различным собственным значениям Ато и Предварительно установим одно предложение, имеющее самостоятельный интерес. Введем так называемый оператор Штурма—Лиувшьгя . Будем рассматривать этот оператор на множестве £2[0,J] функций, дважды непрерывно дифференцируемых на |0,{j и удовлетворяющих граничным условиям . Лемма.

Оператор Штурма—Лиувилля (11)

«а (0,1] является симметрическим: самом деле, i Интегрируя по частям , найдем Интегрируя по частям последний интеграл справа и принимая во внимание, что I х Вновь интегрируя по частям второе слагаемое справа и учитывая, что «|Л=0 = и |яв| = О, получим Обратимся к доказательству теоремы. Запишем уравнение (7) в виде и обозначим через L[X\ оператор, стоящий в левой части (). Это — оператор Штурма—Лиувиллч.

На множесгве собственных функций Х*(х) задачи (7)-(8) это симметрический оператор. Пусть Хт{х) — собственная фунжхия задачи (7)-(8), отвечающая собственному значению Ат, а Х„(ж) — собственная функция, отвечающая собственному значению АП,(А„ Ф Ат). Тогда имеют место тождества Умножим первое тождество на , второе — и проинтегрируем результаты по х от 0 до I. Получим Замечая, что и вычитая равенства (13) и (14) почленно, найдем Так, в частном слу чае однородной струны), закрепленной на концах, собственные функции образуют ортогональную систему функций на отрезке Теорема 5.

Все собственные значения (7)-(8) действительны В самом деле, допустим, что существует комплексное собственное значение , которому отвечает собственная функция . Тогда комплексно сопряженное число А = а — ip также будет собственным значением, а функция комплексно сопряженная с Х(х), будет соответствующей собственной функцией, поскольку коэффициенты уравнения (7) и граничные условия (8) — действительные. Из условия ортогональности собственных функций, отвечающих различным собстве нным значениям, следует комплексное число А не является собственным значением.

Теорема 6. Если , то все собственные значения задачи (7)-(8) положительные. 4 В самом деле, пусть А* — собственное значение, a Xk(x) — соответствующая собственная функция, нормированная с весом р(х). Тогда справедливо тождество Умножая обе части тождества на интегрируя результат по х от 0 до / и принимая во внимание, что , получим о Интегрируя по частям второе слагаемое справа, придем к равенству Вынужденные колебания струны закрепленной на концах Общая схема метода Фурье.

Задача Штурма—Лиувилля Производная ^ £ О, так как в противном случае Хк(х) = const и из граничных условий (8) мы имели бы Хк(х) = 0, что исключено. Таким образом, правая часть (15) положительна, откуда следует, что все собственные значения А* задачи (7)-(8) поло-жительны. Теорема 7. У задачи (7)-(8) существует счетное множество собственных значений которым отвечают собственные функции Продолжим описание метода Фурье. Обратимся кдифференциальномууравнснию (6).

Егообщеерешсние при имеет вид где Ак, Вк — произвольныепостоянные. Каждая функция Если этот ряд, вместе с рядами, полученными из него двукратным почленнымдиффе-рениированием по а: и по t> сходится равномерно, то его сумма и(х, t) будет решением уравнения (1), удовлетворяющим граничным условиям (2). Для выполнения начальных условий (3) необходимо, чтобы Таким образом, мы пришли к задаче о разложении произвольной функции в ряд Фурье по собственным функциям граничной задачи (7)-(8).

Предполагая, что ряды (17) и (18) сходятся равномерно, можно найти коэффициенты Ак и Вк, умножив обе части равенства (17) и (18) на р(х) Хп(х) и проинтегрировав по х в пределах от 0 до I. Считая функции Хк(х) ортонормированными с весом р(х) на отрезке [О, I], по луч им для коэффициентов Фурье функций по системе {ЛГ*(ж)} следующие выражения:

При нахождении коэффициентов Ап и Вп мы опираемся на теорему разложения Стеклова. Теорема 8. Всякая дважды непрерывно дифференцируемая функция F(x), удовлетворяющая граничным условиям задачи, может быть разложена в абсолютно и равномерно сходящийся ряд по собственным функциям Хк(х) этой задачи, нормированные с весом р(х) собственные функции.

Подставим найденные значения коэффициентов Ап и Вп вряд (16) и, если ряд (16) и ряды, полученные из негодаукратным почленным дифференцированием по х и по t, сходятся равномерно, получим решение и(х, t) смешанной задачи (1)-(3). Замечание. Мы рассмотрели случай простейших граничных условий . Несколько изменяя приведенные выше рассувдения, можно доказать аналогичные свойства собствс шых значений и собствен них функций более обшей однородной краевой задачи