Теплопередача в природе и технике

Предмет: Физика
Тип работы: Реферат
Язык: Русский
Дата добавления: 28.08.2019

 

 

 

 

 

  • Данный тип работы не является научным трудом, не является готовой выпускной квалификационной работой!
  • Данный тип работы представляет собой готовый результат обработки, структурирования и форматирования собранной информации, предназначенной для использования в качестве источника материала для самостоятельной подготовки учебной работы.

Если вам тяжело разобраться в данной теме напишите мне в whatsapp разберём вашу тему, согласуем сроки и я вам помогу!

 

По этой ссылке вы сможете найти много готовых рефератов по физике:

 

Много готовых рефератов по физике

 

Посмотрите похожие темы возможно они вам могут быть полезны:

 

Глаз. Зрение. Очки
Колебания, волны, звук и здоровье человека
Дисперсия – тайна солнечного света
Атом и люди


Введение:

Тепло, кинетическая часть внутренней энергии вещества, определяется интенсивное хаотическое движение молекул и атомов, из которых это вещество состоит. Температура является мерой интенсивности движения молекул количество  тепло, которым обладает тело при данной температуре, зависит от его массы;например, при той же температуре, в большой чашке воды, больше тепла, чем маленький, и в ведре с холодной водой это может быть больше, чем чашка горячей воды (хотя температура воды в ведре ниже).

Тепло играет важную роль в жизни человека, в том числе в функционировании его тело. Часть химической энергии, содержащейся в пище, преобразуется в тепло, благодаря которому температура тела поддерживается около 37 градусов Цельсия. Тепловой баланс организма человека также зависит от температуры окружающей среды, и люди вынуждены тратить много энергии на отопление жилых помещений и производственные помещения зимой и для их охлаждения летом. Наиболее эта энергия поставляется тепловыми двигателями, например, котельными и паровые турбины электростанций, работающих на ископаемом топливе (уголь, нефть) и производство электроэнергии.

До конца 18 века. тепло считалось материальным веществом, полагая, что Температура тела определяется количеством "калорийности" жидкость или калорийность. Позже Б. Румфорд, Дж. Джоуль и другие физики время остроумных экспериментов и рассуждений опровергло «калорийность» теория, доказывающая, что тепло невесомо и может быть получено в любом количестве просто механическим движением. Тепла в себе нет материя это просто энергия движения своих атомов или молекул. Именно современная физика придерживается этого понимания тепла.

Теплопередача

Теплопередача это процесс передачи тепла внутри тела или от одного кузов к другому, из-за разницы температур. Интенсивность передачи тепло зависит от свойств вещества, разности температур и подчиняется Экспериментально установленные законы природы. Эффективно создавать работающие системы отопления или охлаждения, различные двигатели, Электростанции, системы теплоизоляции, необходимо знать принципы теплообмена. В В некоторых случаях теплообмен нежелателен (теплоизоляция плавильных печей, космические корабли и т. д.), а в других должно быть столько же (паровые котлы, теплообменники, кухонная утварь).

Три основных типа теплопередачи

Существует три основных типа теплопередачи: проводимость, конвекция и лучистый теплообмен. Теплопроводность. Если внутри тела есть разница температур, то тепловая энергия передается от горячей части к более холодной такие тип теплопередачи из-за тепловых движений и столкновений молекул, называется теплопроводностью; при достаточно высоких температурах в твердом теле органов это можно наблюдать визуально. Таким образом, при нагревании стального прута с на одном конце в пламени газовой горелки тепловая энергия передается вдоль стержня, и свечение распространяется на некотором расстоянии от нагреваемого конца (с расстояние от места нагрева все меньше и меньше).

Скорость теплопередачи за счет теплопроводности зависит от градиента температура, т. е. отношение DТ / Dx разности температур на концах прут на расстояние между ними. Это также зависит от площади поперечного сечение стержня (в м2) и коэффициент теплопроводности материала.

Из закона Фурье следует, что тепловой поток можно уменьшить, уменьшив одно из величины коэффициент теплопроводности, площадь или градиент температуры. Для здания в зимних условиях, последние значения практически постоянны, и, следовательно, чтобы поддерживать желаемую температуру в комнате, осталось уменьшить Теплопроводность стен, т.е. улучшается их теплоизоляция. 

Теплопроводность металлов обусловлена ​​колебаниями кристаллической решетки и движение большого количества свободных электронов (иногда называемых электронными газ). Движение электронов также отвечает за электропроводность металлов, и поэтому неудивительно, что хорошие проводники тепла (например, серебро или медь) также являются хорошими проводниками электричества.

Тепловое и электрическое сопротивление многих веществ резко снижается при понижение температуры ниже температуры жидкого гелия (1,8 К). Это феномен называется сверхпроводимость, используется для повышения эффективности работа многих устройств от микроэлектронных устройств до линий передача электроэнергии и большие электромагниты.

Конвекция. Как мы уже говорили, при подаче тепла на жидкость или газ интенсивность движения молекул увеличивается, и, как следствие, давление. Если объем жидкости или газа не ограничен, то они расширяются; локальная плотность жидкости (газа) становится меньше, и из-за выталкивающих (архимедовых) сил, нагретая часть среды движется вверх (а именно следовательно, теплый воздух в комнате поднимается от батарей к потолку). Это это явление называется конвекцией. Чтобы не тратить тепло от системы отопления впустую, вам нужно использовать современные обогреватели, которые обеспечивают принудительная циркуляция воздуха.

Конвективный тепловой поток от нагревателя к нагретой среде зависит от начальная скорость движения молекул, плотность, вязкость, теплопроводность и теплоемкость и окружающая среда; Размер и форма нагревателя также очень важны. 

Коэффициент конвективного теплообмена h зависит от свойств среды, начальная скорость его молекул, а также от формы источника тепла, и измеряется в ед. Вт / (м2хК). Значение h не одинаково для случаев, когда воздух вокруг нагревателя стационарный (свободная конвекция) и когда тот же нагреватель находится в воздушный поток (принудительная конвекция). В простых случаях поток жидкости вдоль трубы или обтекания плоской поверхности, коэффициент h можно рассчитать теоретически. Тем не менее, найти аналитическое решение проблемы конвекции для Турбулентное течение среды еще не было успешным. Турбулентность это сложно хаотическое на весах движение жидкости (газа), значительно превышающее молекулярное.

Теплопередача в природе и технике

Если нагретое (или, наоборот, холодное) тело помещают в стационарную среду или в поток, то вокруг него образуются конвективные потоки и пограничный слой. Температура, давление и скорость движения молекул в этом слое играют важную роль в определении коэффициента конвективного теплообмена. При проектировании теплообменников, систем необходимо учитывать конвекцию кондиционер, высокоскоростной самолет и многое другое другие устройства. Во всех таких системах одновременно с конвекцией она имеет место теплопроводности, как между твердыми телами, так и в окружающей среде их окружение. При повышенных температурах важную роль могут сыграть лучистый теплообмен.

Лучистый теплообмен. Третий тип теплообмена лучистый теплообмен отличается от теплопроводности и конвекции тем, что тепло в этом случае может передается через вакуум. Его сходство с другими методами теплообмена в Дело в том, что это также связано с перепадом температур. Тепловое излучение одно от видов электромагнитного излучения. Другие его типы радиоволны, ультрафиолетовое и гамма-излучение возникают при отсутствии разницы температуры.

Тепловое излучение может сопровождаться излучением видимый свет, но его энергия мала по сравнению с энергией излучения невидимая часть спектра.

Представленный закон теплового излучения справедлив только для идеального излучатель так называемое черное тело. Нет реального тела это не так, хотя плоская черная поверхность по своим свойствам приближается к абсолютно черному телу. Светлые поверхности излучают относительно слабый Чтобы учесть отклонение от идеала многочисленных «Серые» тела, справа от выражения, описывающего закон Стефана Больцман, ввести коэффициент меньше единицы, называется радиационной способность. Для плоской черной поверхности этот коэффициент может достигать 0,98, а для полированного металла зеркало не превышает 0,05.

Соответственно, абсорбция высока для черного тела и низкая для зеркала. Жилые и офисные помещения часто отапливаются небольшими электрическими излучатели тепла; красноватое свечение их спиралей является видимым тепловым Излучение близко к краю инфракрасной части спектра. Помещения нагревается от тепла, которое переносится в основном невидимой инфракрасной частью излучение. Тепловой источник используется в приборах ночного видения радиационный и ИК-чувствительный приемник, позволяющий видеть в темнота.

Солнце является мощным излучателем тепловой энергии; это нагревает Землю даже расстояние 150 млн. км. Зарегистрированные года в год на станциях, расположенных во многих частях мира приблизительно 1,37 Вт / м2. Солнечная энергия является источником жизни на Земле. Мы ищем способы использовать его наиболее эффективно созданный солнечные панели, которые позволяют обогревать ваш дом и получать электричество для бытовые нужды.

Роль тепла и его использование

Глобальные процессы теплопередачи не ограничиваются нагревом Земли солнечным излучение. Массивные конвекционные потоки в атмосфере определяются ежедневные изменения погодных условий по всему миру. Изменения температуры в атмосфере между экваториальной и полярной областями вместе силы Кориолиса из-за вращения Земли приводят к появлению постоянно изменяющиеся конвекционные потоки, такие как пассаты, струи течения, а также теплые и холодные фронты.

Теплопередача (из-за теплопроводности) от расплавленного ядра Земли к его поверхность приводит к вулканическим извержениям и появлению гейзеров. В некоторых В регионах геотермальная энергия используется для отопления помещений и выработка энергии. Тепло является незаменимым участником практически всех производственных процессов.

Заключение

Мы упомянем наиболее важные из них, такие как выплавка и обработка металлов, работа двигателя, пищевая промышленность, химический синтез, переработка нефти, изготовление самых разнообразных изделий из кирпича и посуды к автомобилям и электронным устройствам.

Многие промышленные производства и транспорта, а также тепловые электростанции не являются может работать без тепловых двигателей устройств, которые преобразуют тепло в полезная работа. Примерами таких машин являются компрессоры, турбины, паровые, бензиновые и реактивные двигатели. Важный источник тепла для таких целей, как производство электроэнергии и транспортировать, обслуживать ядерные реакции. В 1905 году А. Эйнштейн показал, что масса и энергия связаны соотношением E = mc2, т.е. может переходить друг в друга. Скорость света c очень высокая: 300 тыс. км/с. 

Это означает, что даже небольшое количество вещества может дать огромное количество энергия. Так, из 1 кг делящегося вещества (например, урана) теоретически возможно получить энергию, которую электростанция дает за 1000 дней непрерывной работы мощностью 1 МВт.