Сумма ряда

Содержание:

  1. Понятие суммы ряда
  2. Вычисление суммы ряда почленным интегрированием
  3. Вычисление суммы ряда почленным дифференцированием

Понятие суммы ряда

Постановка задачи. Найти сумму ряда

Сумма ряда

где Сумма ряда — целые числа.

План решения. Суммой ряда Сумма ряда называется предел Сумма ряда последовательности его частичных сумм Сумма ряда, т.е.

Сумма ряда

где Сумма ряда

1. По условию задачи

Сумма ряда

Если корни знаменателя различаются на целое число, т.е. Сумма рядаСумма ряда где Сумма ряда — натуральное число, то члены последовательности частичных сумм ряда Сумма ряда легко найти, так как в выражении Сумма ряда многие слагаемые взаимно уничтожаются.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Высшая математика: лекции, формулы, теоремы, примеры задач с решением

2. Разлагаем общий член ряда на элементарные дроби:

Сумма ряда

и выписываем несколько членов ряда так, чтобы было видно, какие слагаемые сокращаются при вычислении частичных сумм ряда.

3. Находим Сумма ряда-ю частичную сумму ряда:

Сумма ряда,

сократив соответствующие слагаемые.

4. Вычисляем сумму ряда по формуле (1)

Сумма ряда

и записываем ответ.

Сумма ряда

Пример:

Найти сумму ряда

Сумма ряда

Решение:

1. Корни знаменателя Сумма ряда и Сумма ряда различаются на целое число, т.е. Сумма ряда Следовательно, члены последовательности частичных сумм ряда Сумма ряда легко найти, так как в выражении Сумма ряда многие слагаемые взаимно уничтожаются.

2. Разлагаем общий член ряда на элементарные дроби

Сумма ряда

и выписываем несколько членов ряда:

Сумма ряда

Сумма ряда

3. Сокращая все слагаемые, какие возможно, находим Сумма ряда-ю частичную сумму ряда:

Сумма ряда

4. Вычисляем сумму ряда по формуле (1):

Сумма ряда

Ответ: Сумма ряда

Возможно вам будут полезны данные страницы:

Полное исследование функции

Исследование графика функции

Найти производную функцию

Уравнение прямой

Вычисление суммы ряда почленным интегрированием

Постановка задачи. Найти сумму функционального ряда вида

Сумма ряда

и указать область сходимости ряда к этой сумме.

План решения.

1. Находим область сходимости ряда.

По признаку Коши интервал сходимости определяется неравенством

Сумма ряда

Если Сумма ряда, ряд расходится. Если Сумма ряда, ряд сходится условно (по признаку Лейбница). Следовательно, область сходимости определяется неравенствами Сумма ряда

2. Делаем в исходном ряде замену Сумма ряда, получим степенной ряд

Сумма ряда

с областью сходимости Сумма ряда.

3. Известна формула для вычисления суммы членов бесконечно убывающей геометрической прогрессии

Сумма ряда

4. Кроме того, имеем очевидное равенство

Сумма ряда

5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке Сумма ряда, целиком принадлежащем интервалу сходимости, и используя формулу (2), получаем

Сумма ряда

Заметим, что так как ряд (1) сходится в граничной точке Сумма ряда, то сумма ряда непрерывна в этой точке (справа). Следовательно, Сумма ряда

6. Вычисляем интеграл, делаем замену Сумма ряда на Сумма ряда и записываем ответ: сумму ряда и область его сходимости.

Замечание. Если ряд имеет вид

Сумма ряда

то применяем теорему о почленном интегрировании степенного ряда дважды или разлагаем дробь на элементарные:

Сумма ряда

и вычисляем сумму каждого ряда почленным интегрированием.

Пример:

Найти сумму ряда

Сумма ряда

и указать область сходимости ряда к этой сумме.

Решение:

1. Находим область сходимости ряда.

По признаку Коши интервал сходимости определяется неравенством Сумма ряда

В граничных точках при Сумма ряда ряд расходится, при Сумма рядаСумма ряда ряд сходится условно.

Следовательно, данный ряд сходится при всех Сумма рядаСумма ряда.

2. Сделаем замену Сумма ряда Получим геометрический ряд (1) с областью сходимости Сумма ряда

3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии

Сумма ряда

4. Кроме того, имеем очевидное равенство

Сумма ряда

5. Учитывая, что степенной ряд можно почленно интегрировать на любом отрезке Сумма ряда, целиком принадлежащем интервалу сходимости, и используя формулу (4), получаем

Сумма ряда

Заметим, что так как ряд (1) сходится в граничной точке Сумма ряда, то его сумма непрерывна в этой точке (справа). Следовательно, формула (5) справедлива при всех Сумма ряда.

6. Заменяя Сумма ряда на Сумма ряда, получаем при Сумма ряда

Сумма ряда

Ответ. Сумма ряда

Вычисление суммы ряда почленным дифференцированием

Постановка задачи. Найти сумму функционального ряда вида

Сумма ряда

и указать область сходимости ряда к этой сумме.

План решения.

1. Находим область сходимости ряда.

По признаку Коши интервал сходимости определяется неравенством

Сумма ряда

Если Сумма ряда, ряд расходится (не выполнено необходимое условие сходимости). Следовательно, область сходимости определяется неравенствами Сумма ряда.

2. Делаем в исходном ряде замену Сумма ряда и записываем его в виде суммы двух рядов

Сумма ряда

Следовательно, достаточно найти суммы рядов

Сумма ряда и Сумма ряда

3. Известна формула для суммы членов бесконечно убывающей геометрической прогрессии

Сумма ряда

4. Кроме того, имеем очевидное равенство

Сумма ряда

5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (1), получаем

Сумма ряда

6. Вычисляем производную и делаем замену Сумма ряда на Сумма ряда. Записываем ответ: сумму ряда и область его сходимости.

Замечание. Если ряд имеет вид

Сумма ряда

то вычисляем сумму трех рядов, причем при вычислении суммы ряда

Сумма ряда

применяем теорему о почленном дифференцировании степенного ряда дважды.

Пример:

Найти сумму ряда

Сумма ряда

и указать область сходимости ряда к этой сумме.

Решение:

1. Находим область сходимости ряда.

По признаку Коши интервал сходимости определяется неравенством Сумма ряда. Отсюда Сумма ряда. В граничных точках Сумма ряда ряд расходится, так как не выполнено необходимое условие сходимости. Следовательно, ряд сходится в интервале Сумма ряда.

2. Делаем в исходном ряде замену Сумма ряда и записываем его в виде суммы двух рядов

Сумма ряда

Следовательно, достаточно найти суммы рядов

Сумма ряда

3. Используем формулу для вычисления суммы членов бесконечно убывающей геометрической прогрессии:

Сумма ряда

Следовательно, Сумма ряда при всех Сумма ряда.

4. Кроме того, имеем очевидное равенство

Сумма ряда

5. Учитывая, что степенной ряд можно почленно дифференцировать в любой точке интервала сходимости, и используя формулу (2), получаем

Сумма ряда

Таким образом,

Сумма ряда

Заменяя Сумма ряда на Сумма ряда, получим

Сумма ряда

Ответ. Сумма ряда

Сумма ряда

Сумма ряда