Скорость точки по теоретической механике

Скорость точки по теоретической механике

Определение скорости

Вспомним основную формулу кинематики для определения скорости

Скорость точки по теоретической механике

Здесь Скорость точки по теоретической механике - вектор перемещения точки, Скорость точки по теоретической механике - время перемещения (рис. 86). Обозначим Скорость точки по теоретической механике перемещение вдоль траектории за этот же промежуток времени и представим правую часть этого равенства в виде произведения двух пределов:

Скорость точки по теоретической механике

Первый из этих пределов равен производной Скорость точки по теоретической механике и может быть вычислен, поскольку закон движения по траектории Скорость точки по теоретической механике при естественном способе описания движения задается. Далее, простые рассуждения показывают, что второй предел равен по модулю единице (как предел отношения длины хорды к длине дуги) и направлен по касательной в сторону возрастания Скорость точки по теоретической механике Следовательно, он определяет орт касательной Скорость точки по теоретической механике для которого попутно получаем формулу

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Таким образом, при естественном способе задания движения скорость точки определяется формулой

Скорость точки по теоретической механике

Формулу можно рассматривать как результат разложения вектора Скорость точки по теоретической механике на составляющие по естественному координатному базису. Величина Скорость точки по теоретической механике равна проекции скорости на направление касательной, а проекции скорости на главную нормаль и бинормаль равны нулю. В общем случае Скорость точки по теоретической механике где Скорость точки по теоретической механике - модуль скорости. Если точка движется в положительном направлении, то Скорость точки по теоретической механике и можно записать

Скорость точки по теоретической механике

По этой ссылке вы найдёте полный курс лекций по теоретической механике:

Предмет теоретическая механика: формулы и лекции и примеры заданий с решением

Определение ускорения

Будем исходить из общей формулы для ускорения

Скорость точки по теоретической механике

Пусть, для определенности, точка движется в положительную сторону отсчета дуг; тогда вектор скорости выражается формулой

Скорость точки по теоретической механике

где Скорость точки по теоретической механике - модуль скорости, Скорость точки по теоретической механике - орт касательной. В общем случае криволинейного движения переменны оба сомножителя в этой формуле; последний - вследствие изменения направления касательной. Поэтому орт Скорость точки по теоретической механике имеет производную по времени, которая выражается формулой

Скорость точки по теоретической механике

где Скорость точки по теоретической механике и Скорость точки по теоретической механике - соответственно орт главной нормали и радиус кривизны траектории в рассматриваемом положении движущейся точки.*

Возможно вам будут полезны данные страницы:

Связи и их реакции теоретическая механика

Теоретическая механика ответы на тесты

Теоретическая механика движение точки

Формулы теоретической механики

Дифференцируя по времени выражение для скорости, получим

Скорость точки по теоретической механике

Формула выражает ускорение точки в виде суммы составляющих по осям естественной системы координат. Из нее следует, что ускорение имеет на эти оси проекции

Скорость точки по теоретической механике

Первая из них есть проекция ускорения Скорость точки по теоретической механике на касательную и называется касательным ускорением. Вектор касательного ускорения

Скорость точки по теоретической механике

направлен в сторону скорости, если движение ускоренное Скорость точки по теоретической механике и против скорости, если движение замедленное Скорость точки по теоретической механике

Проекция ускорения на главную нормаль называется нормальным ускорением. Модуль Скорость точки по теоретической механике и вектор Скорость точки по теоретической механике нормального ускорения выражаются формулами

Скорость точки по теоретической механике

Так как величина Скорость точки по теоретической механике положительна, нормальное ускорение всегда направлено в сторону орта Скорость точки по теоретической механике то есть по главной нормали в сторону вогнутости траектории.

Проекция ускорения на бинормаль (аь) равна нулю, что означает, что вектор ускорения лежит в соприкасающейся плоскости. Таким образом, ускорение при естественном способе задания движения точки определяется как сумма касательного и нормального ускорений:

Скорость точки по теоретической механике

Это правило дополнительно проиллюстрировано на рис. 87, где случай а) соответствует ускоренному движению точки, а случай б) - замедленному движению. Модуль ускорения в обоих случаях определяется по теореме Пифагора:

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Если точка движется прямолинейно, то нормальное ускорение не
Скорость точки по теоретической механике и ускорение состоит только из касательного: Скорость точки по теоретической механике

При равномерном криволинейном движении Скорость точки по теоретической механике наоборот, отсутствует касательное ускорение Скорость точки по теоретической механике и полное ускорение точки равно ее нормальному ускорению: Скорость точки по теоретической механике

Пример с решением №1.

Точка движется по окружности радиуса Скорость точки по теоретической механике согласно закону Скорость точки по теоретической механике Вычислить и построить скорость и ускорение точки в момент Скорость точки по теоретической механике когда она пройдет половину окружности.

В момент Скорость точки по теоретической механике дуговая координата точкиСкорость точки по теоретической механике равна половине длины окружности: Скорость точки по теоретической механике откуда находим

Скорость точки по теоретической механике

Определяем скорость точки в момент Скорость точки по теоретической механике ив расчетный момент Скорость точки по теоретической механике

Скорость точки по теоретической механике

Определяем касательное ускорение

Скорость точки по теоретической механике

Видно, что оно не изменяется с течением времени - точка движется равноускоренно. Это же значение касательное ускорение имеет и в расчетный момент:

Скорость точки по теоретической механике

Определяем нормальное ускорение

Скорость точки по теоретической механике

Определяем полное ускорение в момент Скорость точки по теоретической механике

Скорость точки по теоретической механике

На рис. 88 показаны положения точки в текущий Скорость точки по теоретической механике и расчетный Скорость точки по теоретической механике моменты времени, а также векторы скорости и ускорений точки в момент Скорость точки по теоретической механике

Скорость точки по теоретической механике

В заключение заметим, что от одногоспособа задания движения можно перейти к другим способам. Например, при определении скорости в случае координатного способа описания движения был предварительно сделан переход к векторному способу в виде

Скорость точки по теоретической механике

  • Чтобы перейти от координатного способа к естественному, прежде всего требуется найти уравнение траектории. Как было показано выше, это делается исключением из уравнений движения времени Скорость точки по теоретической механике Закон движения по траектории можно получить на основе равенств

Скорость точки по теоретической механике и Скорость точки по теоретической механике

определяющих скорость точки при естественном и координатном способах задания движения. Приравняв правые части равенств, разрешая полученное соотношение относительно Скорость точки по теоретической механике и интегрируя, находим

Скорость точки по теоретической механике

Это выражение определяет закон движения по траектории в общем

виде.

Если отсчет дуговой координаты вести от начального положения точки в сторону движения, то Скорость точки по теоретической механике радикал положителен, и закон движения примет вид

Скорость точки по теоретической механике

Различают векторный, координатный и естественный (натуральный) способы задания движения.

Векторный способ задания движения состоит в следующем.

Пусть Скорость точки по теоретической механике - движущаяся точка, Скорость точки по теоретической механике - тело отсчета (рис. 72). Выберем в теле Скорость точки по теоретической механике произвольную точку Скорость точки по теоретической механике - точку отсчета, построим вектор Скорость точки по теоретической механике Этот вектор, начало которого совпадает с точкой отсчета Скорость точки по теоретической механике, а конец - с точкой Скорость точки по теоретической механике называется радиусом-вектором точки Скорость точки по теоретической механике При движении точки Скорость точки по теоретической механике радиус-вектор Скорость точки по теоретической механике непрерывно изменяется во времени, поэтому существует некоторая вектор-функция времени

Скорость точки по теоретической механике

Если эта функция известна, то для каждого момента времени Скорость точки по теоретической механике может быть построен вектор Скорость точки по теоретической механике и тем самым найдено положение движущейся точки в этот момент.

Функция (1) называется векторным законом (векторным уравнением) движения точки Скорость точки по теоретической механике

Скорость точки по теоретической механике

При координатном способе задания движения с телом отсчета связывается какая-либо, например декартова прямоугольная, система координат (рис. 73). Движение точки будет задано, если ее координаты будут известны как функции времени

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Зависимости (2), выражающие текущие координаты движущейся точки в виде функций времени, называются уравнениями движения точки в декартовых координатах.

Если точка движется, оставаясь все время в одной плоскости, то оси Скорость точки по теоретической механике можно расположить в той же плоскости и ограничиться двумя уравнениями движения

Скорость точки по теоретической механике

При движении в плоскости часто удобно пользоваться полярной системой координат, задавая положение точки ее полярным углом Скорость точки по теоретической механике и полярным радиусом Скорость точки по теоретической механике (рис. 74). В этом случае уравнения движения точки имеют вид

Скорость точки по теоретической механике

Линия, описываемая движущейся точкой в пространстве, называется траекторией точки. Естественный способ задания движения состоит в задании траектории точки и закона движения по траектории.

Скорость точки по теоретической механике

Пусть траектория точки Скорость точки по теоретической механике суть заданная кривая, Скорость точки по теоретической механике - положение точки на ней (рис. 75). Будем рассматривать траекторию как криволинейную координатную ось, для чего выберем на ней начало отсчета дуг (точку Скорость точки по теоретической механике) и направление отсчета дуг (на рис. 75 направление отсчета дуг выбрано вправо от точки Скорость точки по теоретической механике). Длина дуги Скорость точки по теоретической механике взятая со знаком плюс или минус в зависимости от положения точки Скорость точки по теоретической механике относительно начала отсчета дуг Скорость точки по теоретической механике вполне определяет положение точки в пространстве и называется дуговой координатой точки. Движение точки будет задано, если ее дуговая координата Скорость точки по теоретической механике будет выражена в виде функции времени

Скорость точки по теоретической механике

Зависимость (4) называется законом движения точки по траектории или, что то же самое, законом движения точки в естественной форме.

Пример с решением №2.

Написать уравнения движения точки, движущейся равномерно по окружности радиуса Скорость точки по теоретической механике и делающей Скорость точки по теоретической механике оборотов за одну минуту.

Начнем с естественного способа описания движения. Изображаем траекторию- окружность радиуса Скорость точки по теоретической механике с центром в точке Скорость точки по теоретической механике (рис. 76). Начало отсчета дуг Скорость точки по теоретической механике совместим с положением точки в момент начала наблюдения, то есть при Скорость точки по теоретической механике за положительное направление отсчета выберем направление в сторону движения точки.

Скорость точки по теоретической механике

Пусть Скорость точки по теоретической механике - положение движущейся точки в текущий момент времени Скорость точки по теоретической механике Для центрального угла Скорость точки по теоретической механике который будем отсчитывать в сторону движения точки, согласно условию, можем написать

Скорость точки по теоретической механике

Здесь Скорость точки по теоретической механике измеряется в радианах, Скорость точки по теоретической механике - в секундах.

Длина Скорость точки по теоретической механике дуги Скорость точки по теоретической механике радиус окружности Скорость точки по теоретической механике и центральный угол Скорость точки по теоретической механике связаны геометрическим соотношением

Скорость точки по теоретической механике

Подставляя сюда найденное значение Скорость точки по теоретической механике получаем

Скорость точки по теоретической механике

Это и есть естественной форме.

Для описания движения в координатной форме прежде всего следует выбрать подходящую систему координат, например, изображенную на рис. 77. Далее строят координатные отрезки и определяют соответствующие переменные расстояния. В нашем случае будем иметь:

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Подставляя сюда угол Скорость точки по теоретической механике как функцию времени, получаем уравнения движения в координатной форме

Скорость точки по теоретической механике

Пусть Скорость точки по теоретической механике - координатные орты. Тогда для радиуса-вектора точки Скорость точки по теоретической механике будем иметь:

Скорость точки по теоретической механике

Полученное равенство, выражающее радиус-вектор точки Скорость точки по теоретической механике как функцию времени, служит векторным уравнением ее движения.

Определение траектории, скорости и ускорения точки при векторном способе задания движения

Пусть движение точки Скорость точки по теоретической механике задано векторным способом, то есть задан радиус-вектор точки как функция времени

Скорость точки по теоретической механике

Линия, описываемая концом переменного вектора, начало которого находится в заданной неподвижной точке, называется годографом этого вектора. Отсюда и из определения траектории следует правило: траектория точки есть годограф ее радиуса-вектора.

Пусть в некоторый момент Скорость точки по теоретической механике точка занимает положение Скорость точки по теоретической механике и имеет радиус-вектор Скорость точки по теоретической механике а в момент Скорость точки по теоретической механике - положение Скорость точки по теоретической механикеи радиус-вектор Скорость точки по теоретической механике (рис. 78).

Вектор Скорость точки по теоретической механике соединяющий последовательные положения точки в указанные моменты, называется вектором перемещения точки за время Скорость точки по теоретической механике Вектор перемещения следующим образом выражается через значения вектор-функции (5):

Скорость точки по теоретической механике

Если вектор перемещения поделить на величину промежутка Скорость точки по теоретической механике получим вектор средней скорости точки за время Скорость точки по теоретической механике

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Будем теперь уменьшать промежуток Скорость точки по теоретической механике устремляя его к нулю. Предел, к которому стремится вектор средней скорости Скорость точки по теоретической механике при неограниченном уменьшении промежутка Скорость точки по теоретической механике называется скоростью точки в момент Скорость точки по теоретической механике или просто скоростью точки Скорость точки по теоретической механике В соответствии со сказанным для скорости получаем:

Скорость точки по теоретической механике

Итак, вектор скорости точки равен производной по времени от ее радиуса-вектора:

Скорость точки по теоретической механике

Поскольку секущая Скорость точки по теоретической механике в пределе (при Скорость точки по теоретической механике) переходит в касательную Скорость точки по теоретической механике приходим к выводу, что вектор скорости Скорость точки по теоретической механике направлен по касательной к траектории в сторону движения точки.

В общем случае скорость точки также переменна, и можно интересоваться быстротой изменения скорости. Скорость изменения скорости называется ускорением точки.

Для определения ускорения Скорость точки по теоретической механике выберем какую-либо неподвижную точку Скорость точки по теоретической механике и будем откладывать из нее вектор скорости Скорость точки по теоретической механике в различные моменты времени. Линия, которую опишет конец Скорость точки по теоретической механике вектора скорости, представляет собой годограф Годограф и скорости (рис. 79). Изменение вектора скорости выражается в том, что геометрическая точка Скорость точки по теоретической механике движется по годографу скорости, а скорость этого движения служит, по определению, ускорением точки Скорость точки по теоретической механике

Скорость точки по теоретической механике

Применив для переменного вектора Скорость точки по теоретической механике все те рассуждения, которые были использованы выше для переменного вектора Скорость точки по теоретической механике для ускорения Скорость точки по теоретической механике получаем:

Скорость точки по теоретической механике

или, при обозначении производной по времени точкой:

Скорость точки по теоретической механике

Формулы (6) - (8) являются наиболее общими формулами кинематики для определения скорости и ускорения.

Определение траектории, скорости и ускорения точки при координатном способе задания движения

Пусть движение точки задано уравнениями движения в декартовых координатах: Скорость точки по теоретической механике

Для каждого момента времени Скорость точки по теоретической механике по этим уравнениям можно определить координаты точки в этот момент и указать ее положение в пространстве. Придавая Скорость точки по теоретической механике всевозможные значения, получим множество положений движущейся точки в пространстве - ее траекторию. Следовательно, уравнения движения одновременно являются уравнениями траектории точки в параметрической форме, причем параметром служит время Скорость точки по теоретической механике. Чтобы получить уравнение траектории в виде зависимости между координатами точки, достаточно из уравнений движения исключить время.

Пример с решением №3.

Движение точки задано уравнениями Скорость точки по теоретической механике (Скорость точки по теоретической механике - в сантиметрах, Скорость точки по теоретической механике - в секундах). Найти уравнение траектории точки в координатной форме.

Для определения уравнения траектории из уравнений движения исключаем время Скорость точки по теоретической механике Для этого из первого уравнения выражаем

Скорость точки по теоретической механике

и подставляем это значение во второе уравнение, преобразованное к функциям одинарного угла:

Скорость точки по теоретической механике

Опуская промежуточные выражения, получаем уравнение траектории

Скорость точки по теоретической механике

Уравнение определяет параболу, расположенную симметрично относительно оси у, с вершиной в точке Скорость точки по теоретической механике Траекторией служит кусок этой параболы, заключенный между точками с координатами Скорость точки по теоретической механике и Скорость точки по теоретической механике (рис. 80).

Скорость точки по теоретической механике

Пример с решением №4.

Определить уравнение траектории, если точка движется согласно уравнениям (Скорость точки по теоретической механике- в сантиметрах, Скорость точки по теоретической механике - в секундах):

Скорость точки по теоретической механике

Для исключения времени Скорость точки по теоретической механике из уравнений движения выразим из этих уравнений Скорость точки по теоретической механике и Скорость точки по теоретической механике

Скорость точки по теоретической механике

Возводя эти равенства в квадрат и почленно складывая, получаем уравнение траектории в координатной форме:

Скорость точки по теоретической механике

Это уравнение эллипса с центром в точке Скорость точки по теоретической механике и с полуосями Скорость точки по теоретической механике Скорость точки по теоретической механике (рис. 81). Траекторией служит вся кривая эллипса.

Скорость точки по теоретической механике

Займемся теперь определением скорости и ускорения.

Зная уравнения движения точки, можно выразить в функции времени радиус-вектор точки (рис. 82):

Скорость точки по теоретической механике

Теперь находим скорость, дифференцируя радиус-вектор по времени:

Скорость точки по теоретической механике

При дифференцировании учитывается, что оси Скорость точки по теоретической механике неподвижны, поэтому координатные орты являются постоянными векторами, и их производные равны нулю.

Полученная формула определяет скорость точки в виде разложения

по координатному базису Скорость точки по теоретической механике Так как коэффициенты при ортах равны проекциям скорости на соответствующие координатные оси, отсюда следуют формулы

Скорость точки по теоретической механике

По известным проекциям находим модуль и направляющие косинусы скорости:

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Аналогичным образом определяется и ускорение. Дифференцируя выражение для вектора скорости, получаем:

Скорость точки по теоретической механике

Откуда для проекций ускорения следуют формулы

Скорость точки по теоретической механике

Проекции ускорения можно выразить также через проекции скорости:

Скорость точки по теоретической механике

Модуль и направляющие косинусы ускорения выражаются равенствами

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Пример с решением №4.

Точка движется в плоскости ху согласно уравнениям

Скорость точки по теоретической механике

где Скорость точки по теоретической механике - заданы в сантиметрах, время Скорость точки по теоретической механике - в секундах, а величины Скорость точки по теоретической механике - заданные постоянные. Найти скорость и ускорение точки в момент, когда она впервые после начала движения пересекает ось Скорость точки по теоретической механике

Скорость и ускорение находим, вычисляя их проекции на координатные оси. Сначала это сделаем для произвольного моментаСкорость точки по теоретической механике

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Когда точка находится на оси Скорость точки по теоретической механике, выполняется равенство Скорость точки по теоретической механике Подставляя это значение во второе уравнение движения и решая полученное уравнение относительно Скорость точки по теоретической механике находим

Скорость точки по теоретической механике

Момент Скорость точки по теоретической механике соответствует началу движения, а первое после начала движения пересечение оси Скорость точки по теоретической механике происходит при Скорость точки по теоретической механике Подставляя это значение в предыдущие формулы, найдем

Скорость точки по теоретической механике

Скорость точки по теоретической механике

Таким образом, в расчетный момент времени Скорость точки по теоретической механике скорость Скорость точки по теоретической механике ускорение Скорость точки по теоретической механике имеют модули

Скорость точки по теоретической механике

и направляющие косинусы

Скорость точки по теоретической механике

На рис. 83 показана геометрическая картина движения. Траекторией точки служит окружность радиуса Скорость точки по теоретической механике с центром в точке Скорость точки по теоретической механике Подставляя в уравнения движения Скорость точки по теоретической механике находим, что в начальный момент точка находится в положении Скорость точки по теоретической механике Придавая времени Скорость точки по теоретической механике малое положительное значение Скорость точки по теоретической механике и определяя знаки координат Скорость точки по теоретической механике получаем Скорость точки по теоретической механике из чего следует, что точка движется из положения Скорость точки по теоретической механике против хода часовой стрелки. В расчетный момент Скорость точки по теоретической механике она находится в начале координат, имея скорость Скорость точки по теоретической механике и ускорение Скорость точки по теоретической механике

Скорость точки по теоретической механике

Определение скорости и ускорения точки при естественном способе задания движения

Естественные координатные оси и их орты

Пусть заданы траектория точки, начало и направление отсчета дуг. Выберем на траектории произвольным образом точку Скорость точки по теоретической механике и проведем касательную Скорость точки по теоретической механике. Плоскость, проходящая через точку Скорость точки по теоретической механике перпендикулярно к касательной Скорость точки по теоретической механике называется нормальной плоскостью траектории в точке Скорость точки по теоретической механике (рис. 84).

Скорость точки по теоретической механике

Придадим дуговой координате Скорость точки по теоретической механике приращение Скорость точки по теоретической механике и отметим точку Скорость точки по теоретической механике с координатой Скорость точки по теоретической механике Пусть Скорость точки по теоретической механике - касательная к траектории в точке Скорость точки по теоретической механике В общем случае траектория точки - пространственная кривая, поэтому касательные Скорость точки по теоретической механике и Скорость точки по теоретической механике суть скрещивающиеся прямые.

Проведем прямую Скорость точки по теоретической механике параллельную касательной Скорость точки по теоретической механике Прямые Скорость точки по теоретической механике и Скорость точки по теоретической механике образуют плоскость Скорость точки по теоретической механике Предельное положение плоскости Скорость точки по теоретической механике когда точка Скорость точки по теоретической механике' неограниченно приближается к точке Скорость точки по теоретической механике называется соприкасающейся плоскостью траектории в точке Скорость точки по теоретической механикеСоприкасающаяся плоскость представляет собой ту из бесконечного множества плоскостей, проходящих через касательную Скорость точки по теоретической механике которая наиболее тесно примыкает к траектории в окрестности точки Скорость точки по теоретической механике В случае плоской траектории соприкасающаяся плоскость совпадает с плоскостью траектории.

Нормальная и соприкасающаяся плоскости взаимно перпендикулярны. Проведем через точку Скорость точки по теоретической механике третью плоскость, перпендикулярную к обеим указанным плоскостям - так называемую спрямляющую плоскость. В итоге получаем прямой трехгранный угол с вершиной в точке Скорость точки по теоретической механике называемый естественным трехгранником траектории в этой точке. Ребрами естественного трехгранника являются касательная Скорость точки по теоретической механике главная нормаль Скорость точки по теоретической механике - линия пересечения нормальной и соприкасающейся плоскостей и бинормаль (вторая нормаль) Скорость точки по теоретической механике - линия пересечения нормальной и спрямляющей плоскостей (рис. 85).

Касательная, главная нормаль и бинормаль взаимно перпендикулярны и после установления на них направлений образуют естественную систему координатных осей. Положительное направление касательной выбирается в сторону возрастания дуговой координаты Скорость точки по теоретической механике и задается ортом касательной Скорость точки по теоретической механике Положительное направление главной нормали задается ортом Скорость точки по теоретической механике который направляют от точки Скорость точки по теоретической механике в сторону вогнутости траектории. Орт бинормали Скорость точки по теоретической механике выбирают согласно правилу Скорость точки по теоретической механике чем обеспечивается правосторонность естественного координатного базиса Скорость точки по теоретической механикеСкорость точки по теоретической механике (см. рис. 85).

Скорость точки по теоретической механике