Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Содержание:

  1. Теорема 1:
  2. Пример 3 прамоугольный импульс:
  3. Пример 4:

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

Преобразование Фурье. Интеграл Фурье. Комплексная форма интеграла

 

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

 

исследования задач математической физики является метод интегральных преобразований. Пусть функция f(x) задана на интервале (а, 6), конечном или бесконечном. Интегральным преобразованием функции f(x) называется функция где К(х, ш) — фиксированная для данного преобразования функция, называемая ядром преобразования (предполагается, что интеграл (*) существуете собственном или несобственном смысле). §1.

Интеграл Фурье Всякая функция f(x), которая на отрезке [-f, I] удовлетворяет условиям разложимости в ряд Фурье, может быть на этом отрезке представлена тригонометрическим рядом Коэффициенты а*, и 6„ ряда (1) определяются по формулам Эйлера—Фурье: ПРЕОБРАЗОВАНИЕ ФУРЬЕ Интеграл Фурье Комплексная форма интеграла Преобразование Фурье Косинус и синус преобразования Амплитудный и фазовый спектры Свойства Приложения Ряд в правой части равенства (1) можно записать в иной форме.

С этой целью внесем в него из формул (2) значения коэффициентов а» и оп, подведем под знаки интегралов cos ^ х и sin х (что возможно, поскольку переменной интегрирования является т) О) и используем формулу для косинуса разности. Будем иметь Если функция/(ж) первоначально была определена на интервале числовой оси, большем, чем отрезок [-1,1] (например, на всей оси), то разложение (3) воспроизведет значения этой функции только на отрезке [-1,1] и продолжит се на всю числовую ось как периодическую функцию с периодом 21 (рис. 1).

Поэтому, если функция f(x) (вообще говоря, непериодическая) определена на всей числовой оси, в формуле (3) можно попытаться перейти к пределу при I +оо. При этом естественно потребовать выполнения следующих условий: 1. f(x) удовлетворяет условиям разложимости в ряд Фурье на любом конечном отрезке оси Ох\ 2. функция f(x) абсолютно интегрируема на всей числовой оси, При выполнении условия 2 первое слагаемое правой части равенства (3) при I -* +оо стремится к нулю. В самом деле, Попытаемся установить, во что перейдет в пределе при I +оо сумма в правой, части (3).

 

Возможно вам будут полезны данные страницы:

Решение задач на нахождение пределов
Определение молекулярных масс газов и паров
Основные требования, предъявляемые к зданиям
Конструкции наружных стен гражданских и промышленных зданий

 

Положим так, что Тогда сумма в правой части (3) примет вид В силу абсолютной сходимости интеграла эта сумма при больших I мало отличается от выражения которое напоминает интегральную сумму для функции переменного £ составленную для интервала (0, +оо) изменения Поэтому естественно ожидать, что при сумма (5) перейдет в интеграл Сдругой стороны, при фиксировано) из формулы (3) вытекает, что и мы получаем равенство Достаточное условие справедливости формулы (7) выражается следующей теоремой.

Теорема 1:

Если функция f(x) абсолютно интегрируема на всей числовой оси и имеет вместе со своей производной конечное число точек разрыва первого рода на любом отрезке [а, 6], то справедливо равенство При этом во всякой точке xq, являющейся точкой разрыва 1-го рода функции /(ж), значение интеграла в правой части (7) равно Формулу (7) называют интегральной формулой Фурье, а стоящий в ее правой части интеграл — интегралом Фурье.

Если воспользоваться формулой дня косинуса разности, то формулу (7) можно записать в виде Функции а(£), Ь(£) являются аналогами соответствующих коэффициентов Фурье ап и Ьп 2тг-периодической функции, но последние определены для дискретных значений п, вто время как а(0> НО определеныдля непрерывных значений £ G (-оо, +оо). Комплексная форма интеграла Фурье Предполагая /(х) абсолютно интегрируемой на всей оси Ох, рассмотрим интеграл Этот интеграл равномерно сходится для , так как и потому представляет собой непрерывную и, очевидно, нечетную функцию от Но тогда С другой стороны, интеграл есть четная функция переменной так что Поэтому интегральную формулу Фурье можно записать так: Умножим равенство на мнимую единицу i и прибавим к равенству (10).

Получим откуда, в силу формулы Эйлера будем иметь Это — комплексная форма интеграла Фурье. Здесь внешнее интегрирование по £ понимается в смысле главного значения по Коши: §2. Преобразование Фурье. Косинус- и синус-преобразования Фурье Пусть функция f(x) является кусочно-гладкой на любом конечном отрезке оси Ох и абсолютно интегрируема на всей оси. Определение. Функция откуда, в силу формулы Эйлера , будем иметь называется преобразованием Фурье функции /(г) (спектральной функцией).

Это — интегральное преобразование функции /(г) на интервале (-оо,+оо) с ядром Используя интегральную формулу Фурье получаем Это так называемое обратное преобразование Фурье, дающее переход от F(£) к /(х). Иногда прямое преобразование Фурье задают так: Тогда обратное преобразование Фурье определится формулой Преобразование Фурье функции /(ж) определяют также следующим образом: ПРЕОБРАЗОВАНИЕ ФУРЬЕ Интеграл Фурье Комплексная форма интеграла Преобразование Фурье Косинус и синус преобразования Амплитудный и фазовый спектры Свойства Приложения.

Тогда, в свою очередь, При этом положение множителя ^ достаточно произвольно: он может входить либо в формулу (1"), либо в формулу (2").

Пример 1. Найти преобразование Фурье функции -4 Имеем Это равенство допуска ет дифференцирование по £ под знаком интеграла (получающийся после дифференцирования интеграл равномерно сходится, когда { принадлежит любому конечному отрезку): Интегрируя по частям, будем иметь Внеинтегральное слагаемое обращается в нуль, и мы получаем откуда (С — постоянная интегрирования).

Полагая в (4) £ = 0, найдем С = F(0). В силу (3) имеем Известно, что В частности, для ) получаем, что Пример 2 (разред кокдемсетора через сопропиление). Рассмотрим функцию 4 Для спектрам ыюй функции F(£) получаем Отсюда (рис.2). Условие абсолютной интегри-руемости функции f(x) на всей числовой оси является весьма жестким. Оно исключает, например, такие элементарные функции, как ) = cos ж, f(x) = е1, для которых преобразования Фурье (в рассматриваемой здесь классической форме) не существует.

Фурье-образ имеют только те функции, которые достаточно быстро стремятся к нулю при |х| -+ +оо (как в примерах 1 и 2). 2.1. Косинус- и синус-преобразования Фурье Используя формулу косинуса, разности, перепишем интегральную формулу Фурье в следующем виде: Пусть f(x) — четная функция. Тогда так что изравснства (5) имеем В случае нечетной f(x) аналогично получаем Если f(x) задана лишь на (0, -foo), то формула (6) продолжает f(x) на всю ось Ох четным образом, а формула (7) — нечетным. (7) Определение.

Функция называется косинус-преобразованием Фурье функции f(x). Из (6) следует, что для четной функции f(x) Это означает, что f(x), в свою очередь, является косинус-преобразованием для Fc(£). Иными словами, функции / и Fc являются взаимными косинус-преобразованиями. Определение. Функция называется синус-преобразованием Фурье функции f(x). Из (7) получаем, что для нечетной функции f(x) т.е. f и Fs являются взаимными синус-преобразованиями.

Пример 3 прамоугольный импульс:

Пусть f(t) — четная функция, определенная следующим образом: (рис. 3). Воспользуемся полученным результатом для вычисления интеграла В силу формулы (9) имеем Рис.3 0 0 В точке t = 0 функция f(t) непрерывна и равна единице. Поэтому из (12') получим 2.2. Амплитудный и фазовый спектры интеграла Фурье Пусть периодическая с периодом 2т функция /(х) разлагается в ряд Фурье Это равенство можно записать в виде где — амплитуда колебания с частотой п, — фаза. На этом пути мы приходим к понятиям амплитудного и фазового спектров периодической функции.

Для непериодической функции f{x), заданной на (-оо, +оо), при определенньк условиях оказывается возможным представить ее интегралом Фурье осуществляющим разложение этой функции по всем частотам (разложение по непрерывному спектру частот). Определение. Спектральной функцией, или спектральной плотностью интеграла Фурье, называется выражение (прямое преобразование Фурье функции f называется амплитудным спектром, а функция Ф«) = -агgSfc) — фазовым спектром функции /(«). Амплитудный спектр .А(£) служит мерой вклада частоты £ в функцию /(ж).

Пример 4:

Найти амплитудный и фазовый спектры функции 4 Находим спектральную функцию Отсюда Графики этих функций изображены на рис. 4. §3. Свойства преобразования Фурье 1. Линейность. Если и G(0 — преобразования Фурье функций /(х) и д(х) соответственно, то при любых постоянных а и р преобразованием Фурье функции a f{x) + р д(х) будет функция a Пользуясь свойством линейности интеграла, имеем Таким образом, преобразование Фурье есть линейный оператор. Обозначая его через будем писать

Если F(£) есть преобразование Фурье абсолютно

интегрируемой на всей числовой оси функции /(ж), то F(() ограничена при всех . Пусть функция f(x) абсолютно интегрируема на всей оси — преобразование Фурье функции f(x). Тогда 3«fltsJ. Пусть f(x) — функция, допуска кнцэя преобразование Фурье, Л — дойств ительяов число. Фуниция fh(x) = f{z-h) называется сдвигом фунждии f{x). Пользуясь определен нем преобразования Фурье, показать, что Задача. Пусть функция f(z) имеет преобразование Фурье F(0> h — действительное число. Показать, что 3. Преобразование Фурье и ооерэции дифференцирования.

Пусть абсолютно интегрируемая функция f(x) имеет производную f'(x), также абсолютно интегрируемую на всей оси Ох, так что /(я) стремится к нулю при |ж| —» +оо. Считая f'(x) гладкой функцией, запишем Интегрируя по частям, будем иметь Внеинтегральноеслагаемое обращается в нуль (так как , и мы получаем Таким образом, дифференцированию функции /(х) отвечает умножение ее образа Фурье ^П/] на множитель.

Если функция f(x) имеет глад*«е абсолютно интефируемые производные до порядка m включительно и все они, как и сама функция f(x), стремятся к нулю при то, интегрируя по частям нужное число раз, получим Преобразование Фурье очень полезно именно потому, что оно заменяет операцию дифференцирования операцией умножения на величину и тем самым упрощает задачуинтегрирования некоторых видов дифференциальных уравнений.

Так как преобразование Фурье абсолютно интегрируемой функции f^k\x) есть ограниченная функция от (свойство 2), то из соотношения (2) получаем для следующую оценку: ПРЕОБРАЗОВАНИЕ ФУРЬЕ Интеграл Фурье Комплексная форма интеграла Преобразование Фурье Косинус и синус преобразования Амплитудный и фазовый спектры Свойства Приложения Из этой оценки следует: чем больше функция f(x) имеет абсолютно интегрируемых производных, тем быстрее ее преобразование Фурье стремится к нулю при .

Замечание. Условие является достаточно естественным, поскольку обычная 1еория интегралов Фурье имеет дело с процессами, которые в том или ином смысле имеют начало и коней, но не продолжаются неограниченно с примерно одинаковой интенсивностью. 4. Связь между скоростью убывания функции f(x) при |z| —» -f оо и гладкостью ее преобразования Фурм. Предположим, что не только /(х), но и ее произведение xf(x) является абсолютно интегрируемой функцйей на всей оси Ох. Тогда преобразование Фурье ) будет дифференцируемой функцией.

Действительно, формальное дифференцирование по параметру £ подынтегральной функции приводит к интегралу который является абсолютно и равномерно сходящимся относительно параметра Следовательно, дифференцирование возможно, и Таким образом, т. е. операция умножения f(x) на аргумент х переходит после преобразования Фурье в операцию t щ. Если вместе с функцией f(x) абсолютно интегрируемыми на всей оси Ох являются функции , то процесс дифференцирования можно продолжить.

Получим, что функция имеет производные до порядка m включительно, причем Таким образом, чем быстрее функция f(x) убывает при тем более гладкой получается функция Теорема 2 (о сверле). Пусть- преобразования Фурье функций /,(ж) и f2(x) соответственно. Тогда причем двойной интеграл в правой части сходится абсолютно. Положим - х. Тогда будем иметь или, меняя порядок интегрирования, Функция называется сверткой функций и обозначается символом Формула (1) может быть теперь записана так: Отсюда видно, что преобразование Фурье свертки функций f\(x) и f2(x) равно умноженному на у/2ж произведению преобразований Фурье свертываемых функций, Замечание.

Нетрудно установить следующие свойства свертки: 1) линейность: 2) коммутативность: §4. Приложения преобразования Фурье 1. Пусть Р(^) — линейный дифференциальный оператор порядка m с постоянными коэффициентами, Используя формулу для преобразования Фурье производных функции у(х), находим ' Рассмотрим дифференциальное уравнение где Р — введенный выше дифференциальный оператор. Предположим, что искомое решение у(х) имеет преобразование Фурье у (О. а функция f(x) имеет преобразование /(£)•

Применяя преобразование Фурье к уравнению (1), получим вместо дифференциального алгебраическое уравнение на оси относительно откуда так что формально где символ обозначает обратное преобразование Фурье. Основное ограничение применимости этого метода связано со следующим фактом. Решение обыкновенного дифференциального уравнения с постоянными коэффициентами содержит функции вида еЛ*, eaz cos fix, еах sin рх. Они не являются абсолютно интегрируемыми на оси -оо < х < 4-оо, и преобразование Фурье для них не определено, так что, строго говоря, применятьданный метод нельзя.

Это ограничение можно обойти, если ввести в рассмотрение так называемые обобщенные функции. Однако в ряде случаев преобразование Фурье все же применимо в своей классической форме. Пример. Найти решение а = а(х, t) уравнения (а = const), при начальных условиях Это — задача о свободных колебаниях бесконечной однородной струны, когда задано начальное отклонение <р(х) точек сгруны, а начальные скорости отсутствуют. 4 Поскольку пространственная переменная х изменяется в пределах от -оо до +оо, подвергнем уравнение и начальные условия преобразованию Фурье по переменной х. Будем предполагать, что 1) функции и(х, t) и