Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

Оптическое свойство кривых второго порядка. Касательные к эллипсу и гиперболе

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

Предположим для определенности, что точка М0 лежит в первой четверти, т. е. х0 > О, Уо > 0. Тогда часть эллипса, лежащую в первой четверти, можно описать уравнением Пользуясь формулой (1), получаем уравнение касательной к эллипсу в точке Мо а так как точка (я0, уо) лежит на эллипсе, то Пусть mq(xо, уо) — точка эллипса и, значит, Полученное соотношение после несложных преобразований можно записать так: Отсюда с учетом тождества приходим к уравнению.

Оптическое свойство кривых второго порядка Касательные к эллипсу и гиперболе Касательные к параболе Оптическое свойство эллипса Оптическое свойство гиперболы Оптическое свойство параболы классификация кривых второго порядка Многочлены второй степени на плоскости Канонические уравнения кривых второго порядка (рис. 28). Полученное соотношение является уравнением касательной к эллипсу, проходящей через его точку (я0, Уо), и в обшем случае ее произвольного расположения, т.е. прилюбыхзнаках яо и у0. .

Уравнение касательной к гиперболе выводится аналогично и имеет следующий вид Подчеркнем, что точка (xq, Уо) лежит на гиперболе. Если кривая задана уравнением то уравнение касательной к ней, проходящей через точку (х0,у0), где уо = f(xо), можно записать в следующем виде Касательные к параболе Если кривая задана уравнением то уравнение касательной к ней, проходящей через точку (хо,2/о)> ГДе х0 = д(уо), можно записать в следующем виде Пусть Л/о(х0, уо) — точка параболы.

Пользуясь формулой (I), получаем уравнение касательной к параболе Отсюда в силу равенства yl = 2рх0 приходим к уравнению касательной вида Замечание. Сопоставляя канонические уравнения эллипса, гиперболы и параболы с уравнениями касательных к этим кривым, нетрудно заметить, чтодля получения последних не требуется специальных вычислений.

В самом деле, заменяя у2 на 3/3/0» а х2 на xxq (в случае параболы 2х нужно заменить на х + хо). приходим к уравнению соответствующей касательной. Еше раз отметим, что сказанное справедливо лишь в том случае, когда точка (го. Уо) лежит на кривой. 6.3. Оптическое свойство эллипса Пусть Мо — произвольная точка эллипса Как уже отмечалось, расстояния от нее до фокусов F„ и Fn — фокальные радиусы — равны соответственно.

Проведем через точку А/0 касательную к эллипсу, и вычислим, на каком расстоянии от этой касательной лежат фокусы Fn(~c, 0) и Fn(c, 0) (напомним, что для этого следует воспользоваться формулой (10) из §11.1). Имеем соответственно или — нормирующий м ножитель (рис. 29). Нетрудно проверить,что В самом деле, Обратившись к рис.29, заметим, что вычисленные отношения равны синусам углов, образованных касательной и фокальными радиусами точки касания.

Из того, что синусы этих углов равны, вытекает равенство и самих углов. Тем самым доказано оптическое свойство эллипса: касательная к эллипсу образует равные углы с фокальными радиусами точки касания. Это свойство называется оптическим по следующей причине: если поместить в один из фокусов эллипса с зеркальной «поверхностью» точечный источник Рис.29 света, то все лучи после отражения от «поверхности» эллипса сойдутся в другом его фокусе (рис. 30).

Оптическое свойство гиперболы Устанавливается аналогичными выкладками и заключается в следующем. Если поместить водин из фокусов гиперболы точечный источниксвета,то каждый луч после отражения от зеркальной «поверхности» гиперболы видится исходящим из другого фокуса (рис. 31). Оптическое свойство параболы Если в фокус параболы помешен точечный источник света, то все лучи, отраженные от зеркальной «поверхности» параболы, будут направлены параллельно оси параболы (рис.32).

Многочлены второй степени на плоскости Теорема. Пусть на плоскости введена прямоугольная декартова система координат Оху и пусть Оптическое свойство кривых второго порядка Касательные к эллипсу и гиперболе Касательные к параболе Оптическое свойство эллипса Оптическое свойство гиперболы Оптическое свойство параболы классификация кривых второго порядка Многочлены второй степени на плоскости Канонические уравнения кривых второго порядка — многочлен второй степени от переменных х и у.

Тогда на плоскости можно построить прямоугольную дека ртов у систему координат O'XY так, что после замены переменных х и у на переменные X uY исходный многочлен f(x, у) приведется к многочлену F(X, Y) одного из следующих трех видов: шаг. Поворотом координатных осей на подходящим образом выбранный угол всегда можно добиться того, чтобы коэффициент при произведении разноименных координат обратился в нуль. Пусть 6^0 (при этот шаг не нужен).

Возможно вам будут полезны данные страницы:

Готовые решения методичка Химия СамГТУ Н.И.Лисов, С.И.Тюменцева
Закон Гесса
Растворы. Законы Рауля, Вант-Гоффа
Системы дифференциальных уравнений. Методы интегрирования. Метод исключения

Повернем оси координат вокругточки О. Эта операция описывается следующими формулами Рис.33 При этом координатные оси исходной системы Оху поворачиваются на угол ^ (рис.33). Заменим переменные х и у в формуле (I) их выражениями (2) через и вычислим коэффициент 2b при произведении Он равен и обращается в нуль, если Так как полученное уравнение разрешимо относительно , то указанным преобразованием всегда можно добиться обращения в нуль нужного коэффициента.

Приступая ко второму этапу преобразования, будем считать, что исходный многочлен /(я, у) уже имеет вид где а2 + с2 >0.

Для определенности положим с Ф 0 (это не ограничивает общности наших рассуждений, так как заменой я и у в случае необходимости этого всегда можно добиться). 2-й шаг. Переносом начала координат можно достичьдальнейшего упрощения вида м ногочле-на f(x, у). Эта операция описывается следующими формулами: координатные оси новой системы получаются из координатных осей исходной системы Оху параллельным переносом в точку (-а, -р) (рис.34). Укажем конкретные значения а и р. Возможны три случая Тогда, полагая Рис. 34 О) е получаем глс .

Тогда, полагая получаем, что где Тогда, полагая получаем, что где В = с, Е = 7.2. Канонические уравнения кривых второго порядка Если многочлен второй степени F(X, Y) приравнять к нулю, то получим уравнение линии второго порядка' Полагая a' получим эллипс — X2 У2 Полагая получим {мнимыйэллипс)7*. На действительной плоскости пет ни одной точки (X, У), координаты которой обращали бы это уравнение в тождество. 3. С = 0. Полагая получим Точка (0,0) является единственной точкой плоскости, координаты которой удовлетворяют этому уравнению; точку (0,0) можно мыслить как действительную точку пересечения двух мнимых пересекающихся прямых3). Г. А В 0.

Домножснием обеих частей уравнения из п. I на -1 и заменой X на У, а У на в случае необходимости) всегда можно добиться того, чтобы Полагая получим гиперболу Полагая получим — пару пересекающихся прямых: Название можно объяснить некоторым сходством этого уравнения с уравнением эллипса. Название можно объяснить некоторым сходством этого уравнения с уравнением лары пересекающихся прямых.

Всегда можно добиться того, чтобы В D (заменив, в случае необходимости, X на -X). Полагая получим параболу . Можно считать, что В 0. 1. Е Полагая получим — пару параллельных прямых. 2. Е > 0. Полагая получим На действительной плоскости нет ни одной точки, координаты которой обращали бы это уравнение (пары мнимых пара>1лелыыхпрямых) в тождество. 3. Е = 0. Тогда — пара совпадающих прямых. Чтобы определить тип кривой второго порядка, не обязательно проводить все указанные выше преобразования. Достаточно вычислить знаки некоторых выражений, составленных из коэффициентов уравнения.

Оптическое свойство кривых второго

порядка Касательные к эллипсу и гиперболе Касательные к параболе Оптическое свойство эллипса Оптическое свойство гиперболы Оптическое свойство параболы классификация кривых второго порядка Многочлены второй степени на плоскости Канонические уравнения кривых второго порядка уравнение линии второго порядка. Введем следующие обозначения Числа D и Д не зависят от выбора системы координат на плоскости и называются инвариантами.

Из приводимой таблицы видно, какому сочетанию знаков определителей D и Д соответствует та или иная линия второго порядка. Задача. Убедитесь в том, что d и Д при рассмотренных преобразованиях системы координат действительно остаются неизменными. ^ Название можно объяснить некоторым сходством этого уравнения с уравнением пары параллельных Эллипс Мнимый эллипс Пара мнимых пересекающихся прямых Гипербола Пара пересекающихся прямых Парабола Пара параллельных прямых Пара мнимых параллельных прямых Парасовпадаюших прямых