Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

Независимость криволинейного интеграла от пути интегрирования

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

Определение. Область G трехмерного пространства называется поверхностно односвяз-ной. если на любой замкнутый контур, лежащий в этой области, можно натянуть поверхность, целиком лежащую в области G. Например, внутренность сферы или все трехмерное пространство являются поверхностно односвязлыми областями; внутренность тора или трехмерное пространство, иа которого исключена прямая, поверхностно односвязными областями не являются.

Пусть в поверхностно односвязной области G задан о непрерывное векторное поле Тогда имеет место следующая теорема. Теорема 9 .Для того чтобы криволинейный интеграл в поле вектора а не зависел от пути интегрирования, а зависел только от начальной и конечной точек пути (А и В), необходимо и достаточно, чтобы циркуляция вектора а вдоль любого замкнутого контура L, расположенного в области G, была равна нулю. 4 Необходимость. Пусть и т-еграл не зависит от пути интегрирования.

Покажем, что тогда по любому замкнугому контуру L равен нулю. Рассмотрим произвольный замкнутый контур L в поле вектора а и возьмем на нем произвольно точки А и В (рис.35). По условию имеем — различные пути, соединяющие точни А и В\откуда как раз и есть выбранный зам!«утый контур L. Достаточность. Пусть для любого замкнутого контура L. Покажем, что в этом случае интеграл не зависит от пути интегрирования.

Возьмем в поле вектора а две точки А и В, соединим их произвольными линиями L] и Ьг и покажем, что Для простоты ограничимся случаем, когда линии L\ и L2 не пересекаются. В этом случае объединение образует простой замкнутый контур L (рис. 36). По условию а по свойству аддитивности . Независимость криволинейного интеграла от пути интегрирования Потенциальное поле Вычисление криволинейного интеграла в потенциальном поле Вычисление потенциала в декартовых координатах Следовательно, откуда справедливость равенства (2) и вытекает.

Теорема 9 выражает необходимое и достаточное условия независимости криволинейного интеграла от формы пути, однако эти условия трудно проверяемы. Приведем более эффективный критерий. Теорема 10. Для того, чтобы криволинейный.интеграл не зависел от пути интегрирования L, необходимо и достаточно, чтобы векторное поле было безвихревым, Здесь предполагается, что координаты ) вектора а(М) имеют непрерывные частные производные первого порядка и область определения вектора а(М) поверхностно односвязна.

Замечание. В силу теоремы 9 независимость криволинейного интеграла от пути интегрирования равносильна равенству нулю циркуляции век тора а вдоль любого замкнутого контура. Это обстоятельство мы используем при доказательстве теоремы. Необходимость. Пусть криволинейный интеграл не зависит от формы пути, или, что то же, циркуляция вектора а по любому замкнутому контуру L равна нулю. Тогда т. е. в каждой точке поля проекция вектора rot а на любое направление равна нулю.

Возможно вам будут полезны данные страницы:

Тройной интеграл. Вычисление тройного интеграла
Характеристики рассеяния. Дисперсия и ее свойства. Неравенство Чебышёва
Оформление привязки проектной документации
Некоторые простые неявные функции

Это означает, что сам вектор rot а равен нулю во всех точках поля, Достаточность. Достаточность условия (3) вытекает из формулы Стокса, так как если rot а = 0, то и циркуляция вектора по любому замкнутому контуру L равна нулю: Ротор плоского поля равен что позволяет сформулировать для плоского поля следующую теорему. Теорема 11. Для того, чтобы криволинейный интеграл в односвязном плоском поле не зависел от формы линии L, необходимо и достаточно, чтобы соотношение выполнялось тождественно во всей рассматриваемой области.

Если область неодносвязна, то выполнение условия вообще говоря, не обеспечивает независимости криволинейного интеграла от формы линии. Пример. Пусть Рассмотрим интеграл Ясно, что подынтегральное выражение не имеет смысла в точке 0(0,0). Поэтому исключим эту точку. В остальной части плоскости (это будет уже не односвязная область!) координаты вектора а непрерывны, имеют непрерывные частные производные и Рассмотрим интеграл (6) вдоль замкнутой кривой L — окружности радиуса R с центром в начале координат:

Тогда Отличие циркуляции от нуля показывает, что интеграл (6) зависит от формы пути интегрирования. §10. Потенциальное поле Определение. Поле вектора а(М) называется потенциальным, если существует скалярная функция и(М) такая, что При этом функция и(М) называется потенциалом поля; ее поверхности уровня называются эквипотенциальными поверхностями. то соотношение (1) равносильно следующим трем скалярным равенствам:

Заметим, что потенциал поля определяется с точностью до постоянного слагаемого: если следовательно, — постоянное число. Пример 1. Поле радиус-вектора г является потенциальным, так как напомним, что Потенциалом поля радиус-вектора является, следовательно. Пример 2. Поле вектора является потенциальным. Пусть функция такая, что найдена. Тогда и откуда Значит, — потенциал поля. Теорема 12.

Для того чтобы паче вектора а было потенциальным, необходимо и достаточно, чтобы оно было безвихревым, т. е. чтобы его ротор равнялся нулю во всех точках поля. При этом предполагается непрерывность всех частных производных от координат вектора а и поверхностная односвязность области, в которой задан вектор а. Необходимость. Необходимость условия (2) устанавливается непосредственным подсчетом: если поле потенциально, т. е. в силу независимости смешанных производных от порядка дифференцирования. Достаточность .

Пусть поле вектора безвихревое (2). Для того чтобы доказать потенциальность этого поля, построим его потенциал и(М). Из условия (2) следует, что криволинейный интеграл не зависит от формы линии L, а зависит только от ее начальной и конечной точек. Зафиксируем начальную точку а конечную точку Му, z) будем менять. Тогда интеграл (3) будет функцией точки .

Обозначим эту функцию через и(М) и докажем, что В дальнейшем будем записывать интеграл (3), указывая лишь начальную и конечную точку пути интегрирования, Равенство равносильно трем скалярным равенствам Независимость криволинейного интеграла от пути интегрирования Потенциальное поле Вычисление криволинейного интеграла в потенциальном поле Вычисление потенциала в декартовых координатах Докажем первое из них, второе и третье равенст ва доказываются аналогично.

По определению частной производной имеем Рассмотрим точку , близкую к точке Так как функция и(М) определяется соотношением (4), в котором криволинейный интеграл не зависит от пути интегрирования, то выберем путь интегрирования так, как указано нарис.37. Тогда Отсюда Последний интеграл берется моль отрезка прямой ММ), параллельной оси Ох. На этом отрезке в качестве параметра можно принять координату ж: Применяя к интегралу в правой части (6) теорему о среднем, получаем где величина £ заключена между .

Из формулы (7) вытекает, что Так как то в силу непрерывности функции получаем Аналогично доказывается, что Следствие.

Векторное поле является потенциальным тогда и только тогда, когда криво линейный интеграл в нем не зависит от пути. Вычисление криволинейного интеграла в потенциальном поле Теорема 13. Интеграл в потенциальном поле а(М) равен разности значений потенциала и(М) поля в конечной и начальной точках пути интегрирования, Ранее был о доказано, что функция является потенциалом поля. В потенциальном поле криволинейный интефал не зависит от пуги интефирования.

Поэтому, выбирая путь отточки М\ к точке М2 так, чтобы он прошел через точку Afo (рис. 38), получаем или, меняя ориентацию пути в первом интефале справа, Так как потенциал поля определяется с точностью до постоянного слагаемого, то любой потенциал рассматриваемого поля можетбыть записан в виде где с — постоянная. Делая в формуле (10) замену и- с, получим для произвольного потенциала v(M) требуемую формулу Пример 3. В примере 1 было показано, что потенциалом поля радиус-вектора г является функция где — расстояние от точки до начала координат.

Вычисление потенциала в декартовых координатах Пусть задано потенциальное поле Ранее было показано, что потенциальная функция «(М) может быть найдена по формуле Интеграл (11) удобнее всего вычислять так: зафиксируем начальную точку и соединим ее с достаточно близкой текущей точкой М(х, y,z) ломаной , звенья которой параллельны координатным осям, . При этом на каждом звене ломаной изменяется только одна координата, что позволяет существенно упростить вычисления.

В самом деле, на отрезке М0М\ имеем: На отрезке . Рис. 39 . На отрезке . Следовательно, потенциал равен где — координаты текущей точки на звеньях ломаной, вдоль которых ведется интегрирование. Пример 4. Доказать, что векторное поле к является потенциальным, и найти его потенциал. 4 Проверим, будет ли поле вектора a(Af) потенциально. С этой це/ью вычислим ротор поля. Имеем Поле является потенциальным. Потенциал этого поля найдем с помощью формулы (12). Возьмем за начальную точку Л/о начало координат О (так обычно поступают, если поле а(М) определено в начале координат). Тогда получим Итак, где с — произвольная постоянная.

Потенциал этого поля можно найти

и по-иному. По определению потенциал и(х, у, z) есть скалярная функция, для которой gradu = а. Это векторное равенство равносильно трем скалярным равенствам: Интегрируя (13) по х, получим где — произвольная дифференцируемая функция ог у и г. Продифференцируем по у: Независимость криволинейного интеграла от пути интегрирования Потенциальное поле Вычисление криволинейного интеграла в потенциальном поле Вычисление потенциала в декартовых координатах Проинтегрировав (17) по у, найдем — некоторая функция z. Подставив (18) в (16), получим . Дифференцируя последнее равенство no z и учитывая соотношение (15), получим уравнение для откуда