Гамма-функцией называется интеграл Бета-функция и ее свойства

Гамма-функцией называется интеграл Бета-функция и ее свойства

Гамма-функцией называется интеграл Бета-функция и ее свойства

Гамма-функцией называется интеграл Бета-функция и ее свойства

Гамма-функцией называется интеграл Бета-функция и ее свойства

Гамма-функцией называется интеграл Бета-функция и ее свойства

Гамма-функцией называется интеграл Бета-функция и ее свойства

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

Область определения гамма-функции Г(ж) В интеграле (1) имеются особенности двух типов: 1) интегрирование по полупрямой 2) в точке подынтегральная функция обращается в бесконечность . Чтобы разделить эти особенности, представим функцию Г(ж) в виде суммы двух интегралов Гамма-функцией называется интеграл.

Область определения гамма-функции Некоторые свойства гамма-функции Бета-функция и ее свойства Область определения бета-функции Применение интегралов Эйлера в вычислении определенных интегралов и рассмотрим каждый из них отдельно. Так как то интеграл сходится при (по признаку сравнения). Интеграл сходится при любом х.

В самом деле, взяв произвольное , получим, что при любом х При интеграл сходится, следовательно, интеграл сходится при любом x. Тем самым, сходится при и мы доказал и, что областью определения гамма-функции Г(ж) является полупрямая Покажем, что интеграл (1) сходится равномерно по х на любом отрезке Пусть .

Тогда при имеем Интегралы в правых частях формул (2) и (3) сходятся, а по признаку Вейерштрасса равномерно сходятся интегралы, стоящие в левых частях неравенств (2) и (3). Следовательно, в силу равенства получаем равномерную сходимость Г(х) на любом отрезке [с, й],где. Из равномерной сходимости Г(ж) вытекает непрерывность этой функции при Некоторые свойства гамма-функции 1. (гамма-функция при х > 0 не имеет нулей). 2. При любом х > 0 имеет место формула приведения для гамма-функции 3.

При х = п имеет место формула При х = 1 имеем Пользуясь формулой (4), получим Применяя формулу п раз, при получаем 4. Кривая у = Г(х) выпукла вниз. В самом деле, Отсюда следует, что производная на полупрямой может иметь только один нуль. А так как , то по теореме Ролля этот нуль х0 производной Г'(х) существует и лежит в интервале (1,2). Поскольку , то в точке х0 функция Г(х) имеет минимум.

Можно показать, что на (0, +оо) функция Г(х) дифференцируема любое число раз.

Из формулы ибо непрерывна и при 6. Формула дополнения. График гамма-функции имеет вид, изображенный на рис. 4. § 4. Бета-функция и ее свойства Бета-функцией называется интеграл зависящий от параметров 4.1. Область определения бета-функции В(х) Подынтегральная функция при имеет две особые точки Для отыскания области определения представим интеграл (7) в виде суммы двух интегралов первый из которых (при) имеет особую точку , а второй (при — особую точку t = 1.

Возможно вам будут полезны данные страницы:

Примеры расчетов при растяжении (сжатии)
Дифференцируемость функции. Дифференциал функции
Химия и охрана окружающей среды
Метод функций Ляпунова. Устойчивость по первому (линейному) приближению

Интеграл — несобственный интеграл 2-го рода. Он сходится при условии, что при , а инте!рал Гамма-функцией называется интеграл Область определения гамма-функции Некоторые свойства гамма-функции Бета-функция и ее свойства Область определения бета-функции Применение интегралов Эйлера в вычислении определенных интегралов сходится при Тем самым, бета-функция В(х} у) определена для всех положительных значений хну.

Можно доказать, что интеграл (7) равномерно сходится в каждой области х^а>0, У>Ь>Оу так что бета-функция непрерывна при Некоторые свойства бета-функции 1. При справедлива формула Бета-функция является симметричной относительно хну, Это следует из формулы (9). §5. Применение интегралов Эйлера в вычислении определенных интегралов Рассмотрим несколько примеров. Пример 1. Вычислить интеграл 4 Введем замену получаем Поэтому Пример 2.

Вычислить интеграл Положим

тогда , пределы интегрирования остаются прежними, так что заданный интеграл сводится к бета-функции: Пример 3. Исходя из равенства вычислить интеграл Здесь мы воспользовались определением бета-функции и формулами Упражнения Вычислите пределы: Найдите производные F'(y) для следующих функций: о. Исходя из равенства . вычислите интеграл 7.

Используя равенство , путем дифференцирования по параметру получите следующую формулу: 8. Докажите, что интеграл РавномеРно сходится по у на всей вещественной оси. 7 dx 9. Докажи те, что интеграл сходится равномерно по параметру s на любом отрезке 10. Используя равенство вычислите путем дифференцирования по параметру интеграл С помощью Эйлеровых интегралов вычислите следующие интегралы:

Выразите через Эйлеровы интегралы: Гамма-функцией называется интеграл Область определения гамма-функции Некоторые свойства гамма-функции Бета-функция и ее свойства Область определения бета-функции Применение интегралов Эйлера в вычислении определенных интегралов целое положительное) Докажем, что интеграл равномерно сходится на всей вещественной оси:

1) имеет место соотношение всякого в качестве Л(е), упоминаемого в определении несобственного интеграла, равномерно сходящегося по параметру у, можно взять При В > А будем иметь Докажем, что интеграл /(«) = / равномерно сходится при а Так как при О 1 и интеграл сходится, то по достаточному признаку Вейерштрасса заключаем, чгто данный интеграл рав- номерно сходится. 10. Имеем Дифференцируя п раз о