Частные производные. Частные дифференциалы

Содержание:

  1. Необходимые условия дифференцируемости функции
  2. Производные сложной функции 

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

Частные производные. Частные дифференциалы

 

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

 

Пусть функция z — /(х, у) определена в некоторой области D на плоскости хОу. Возьмем внутреннюю точку (х, у) из области D и дадим х приращение Ах такое, чтобы точка (х + Ах, у) 6 D (рис.9). Величину назовем частным приращением функции z по х. Составим отношение Для данной точки (х, у) это отношение является функцией от Определение.

Если при Ах -* 0 отношение ^ имеет конечный предел, то этот предел называется частной производной функции z = /(х, у) по независимой переменной х в точке (х, у) и обозначается символом jfc (или /i(x, jj), или z'x(x, Та ним образом, по определению или, чтотоже самое, Аналогично Если и — функция п независимых переменных, то Заметив, что Arz вычисляется при неизменном значении переменной у, a Atz — при неизменном значении переменной х, определения частных производных можно сформулировать так: Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных

Необходимые условия дифференцируемости функции

Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал. Частные дифференциалы Производные сложной функции частной производной по х функции z = /(х, у) называется обычная производная этой функции по х, вычисленная в предположении, что у — постоянная; частной производной по у функции z — /(х, у) называется ее производная по у, вычисленная в предположении, что х — постоянная.

Отсюда следует, что правила вычисления частных производных совпадают с правилами, доказанными для функции одной переменной. Пример. Найти частные производные функции 4 Имеем Заменами*. Из существования у функции г = /(х, у) в данной точке частных производных по всем аргументам не вытемает непрерывности функции в этой точке. Так, функция не является непрерывной в точке 0(0,0). Однако в этой точке указанная функция имеет частные производные по х и по у.

Это следует из того, что /(х, 0) = 0 и /(0, у) = 0 и поэтому Геометрический смысл частных производных функции двух переменных Пусть в трехмерном пространстве поверхность S задана уравнением где f(x, у) — функция, непрерывная в некоторой области D и имеющая там частные производные по х и по у. Выясним геометрический смысл этих производных в точке Мо(хо,уо) 6 D, которой на поверхности z = f{x}y) соответствует точка f(x0}yo)).

 

Возможно вам будут полезны данные страницы:

Значение химии для народного хозяйства
Классификация химических реакций. Тепловой эффект химической реакции
Готовое решение. Расчет усилительного каскада с ОЭ
Аминокислоты для чего нужны? Свойства!

 

При нахождении частной производной вточке М0 мы полагаем, что z является только функцией аргумента х, тогда как аргумент у сохраняет постоянное значение у = уо, т. е. Функция fi(x) геометрически изображается кривой L, по которой поверхность S пересекается плоскостью у = у о. В силу геометрического смысла производной функции одной переменной f\(xo) = tg а, где а — угол, образованный касательной к линии L в точке JV0 с осью Ох (рис. 10).

Но так что Такимобразом, частная производная ($|) равнатангенсуугла а между осью Ох и касательной в точке N0 к кривой, полученной в сечении поверхности z = /(х, у) плоскостью у Аналогично получаем, что §6. Дифференцируемость функции нескольких переменных Пусть функция z = /(х, у) определена в некоторой области D на плоскости хОу. Возьмем точку (х, у) € D и выбранным значениям х и у дадим любые приращения Ах и Ду, но такие, чтобы точка . Определение.

Функция г = /(х, у) называется дифференцируемой * точке (ж, у) € 2Э, если полное прирашение этой функции, отвечающее приращениям Дх, Ду аргументов, можно представить в виде где Л и В не зависят от Дх и Д у (но вообще зависят от х и у), а а(Дх, Ду) и /?(Дх, Ду) стремятся к нулю при стремлении к нулю Дх и Ду. . Если фунмция z = /(х, у) дифференцируема в точке (х, у), то часть А Дх 4- ВДу приращения функции, линейная относительно Дх и Ду, называется полным дифференциалом этой функции в точке (х, у) и обозначается символом dz: Таним образом, Пример.

Пусть г = х2 + у2. Во всякой точке (г,у) и для любых Дх и Ду имеем Здесь . тек что а и /3 стремятся к нулю при стремлении к нулю Дх и Ду. Согласно определению, данная функция дифференцируема в любой точке плоскости хОу. При этом Заметим, что в наших рассуждениях не был формально исключен тот случай, когда приращения Дх, Ду порознь или даже оба сразу равны нулю.

Формулу (1) можно записать более компактно, если ввести выражение (расстояние между точками ( Пользуясь им, можем написать Обозначив выражение, стоящее в скобнах, через е, будем иметь где с зависит от Дж, Ду и стремится к нулю, если Дж 0 и Ду 0, или, короче, если р 0. Формулу (1), выражающую условие дифференцируемости функции z = f{xt у) в точке (ж, у), можно теперь записать в виде Так, в приведенном выше примере 6.1. Необходимые условия дифференцируемое™ функции Теореме 4.

Если функция г = /(ж, у) дифференцируема в некоторой точке, то она в этой точке непрерывна.

4 Если в точке (ж, у) фунлшя г = /(ж, у) дифференцируема, то полное приращение функции я в этой точ»«е, отвечающее приращениям Дж и Ду аргументов, можно представи ть в виде (величины Л, В для данной точки постоянны; , откуда следует, что Последнее означает, что в точке (ж, у) функция г /(ж, у) непрерывна. Теорем! б. Если функция г = /(ж, у) дифференцируема в данной точке, mo око ы.иеет в этой точке частные производные $§ и . Пусть функция z = /(х, у) дифференцируемад точке (х, у). .

Тогда прираше^ Дг этой функции, отвечающее приращениям Дх, Ау аргументов, можно представить в виде (1). Взяв в равенстве (1) Дх Ф 0, Ду = 0, получим откуда Так как в правой части последнего равенства величина А не зависит от , Это означает, что в точке (х, у) существует частная производная функции г = /{х, у) по х, причем Подобными же рассуждениями убеждаемся (х, существует частная производная функции zу, причем Из теоремы следует, что Подчеркнем, что теорема 5 утверждает существование частных производных только в точке (х, у), но ничего не говорит о непрерывности их в этой точке, а также об их поведении в окрестности точки (х, у). 6.2.

Достаточные условия дифференцируемое™ функций нескольких переменных Как известно, необходимым и достаточным условием дифференцируемости функции у = /(х) одной переменной в точке хо являетсясу шествование конечной производной /'(х) в точке х0. В случае, когда функция зависит от нескольких переменных, дело обстоит значительно сложнее: необходимых и достаточных условий дифференцируемости нет уже для функ ии z = /(х, у) двух независимых переменных х, у; есть лишь отдельно необходимые условия (см. выше) и отдельно — достаточные.

Эти достаточные условия дифференцируемости функций нескольких переменных выражаются следующей теоремой. Теорема в. Если функция имеет частные производные /£ и f'v в некоторой окрестности тонки (хо, Уо) и если эти производные непрерывны в самой точке (хо,Уо), то функция z = f(x, у) дифференцируема в точке (х- Пример. Рассмотрим функцию Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных Необходимые условия дифференцируемости функции Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал.

Частные дифференциалы производные сложной функции.

Она определена всюду. Исходя из определения частных производных, имеем Для наощдрлм* дифференцируемое™ данной функции в точке 0(0,0) найдем и приращение этой точит Для дифференцируем ости функции /(х,у) = в точив 0(0,0) необходимо, чтобы функция е(Дх, Ду) быле 6всконеио малой при Дх 0 и Ду 0. Положим Д0. Тогда из формулы (1) будем иметь Поэтому функции /(х,у) = не дифференцируема в точке 0(0,0), хотя и имеет в этой точке производим fa и f'r

Полученный результат объясняется тем, что производные f'z и f't разрывны точке §7. Полный дифференциал. Частные дифференциалы Если функция г - f(z> у) дифференцируема, то ее пожьгй дифференциал dz равен Замечая, что А = В = щ , запишем формулу (1) в следующем виде Распространим понятие дифференциала функции на независимые переменные, положив дифференциалы независимых переменных равными их приращениям: После этого формула полного дифференциала функции приметвкд Пример.

Пусть i - 1л(х + у2). Тогда Аналогично, если u =) есть дифференцируемая функция n независимых переменных, то Выражение называется постным дифференциалом функции z = f(x, у) по переменной х; выражение называется частным дифференциалом функции z = /(ж, у) попеременной у. Из формул (3), (4) и (5) следует, что полный дифференциал функции является суммой ее частных дифференциалов: Отметим, что полное приращение Az функции z = /(ж, у), вообще говоря, не равно сумме частных приращений.

Если в точке (я, у) фунмцияг = /(ж, у) дифференцируема и дифференциал dz Ф О в этой точке, то ее полное приращение отличается от своей линейной части только на сумму последних слагаемых аАх 4- /?ДУ, которые при Аж 0 и Ау --» О являются бесконечно малыми более высокого порядка, чем слагаемыелинейной части. Поэтому при dz Ф 0 линейную часть приращения дифференцируемой функции называют главной частью приращения функции и пользуются приближенной формулой которая будет тем более точной, чем меньшими по абсолютной величине будут приращения аргументов. §8.

Производные сложной функции 

Пусть функция определена в некоторой области D на плоскости хОу, причем каждая из переменных ж, у в свою очередь является функцией аргумента t: Будем предполагать, что при изменении t в интервале ( соответствующие точки (ж, у) не выходят за пределы области D. Если подставить значения в функцию z = / (ж, у), то получим сложную функцию одной переменной t. и при соответствующих значениях функция /(х,у) дифференцируема, то сложная функция , в точке t имеет производную причем M Дадим t приращение Дt.

Тогда x и у получат некоторые приращения Ах и Ду. В результате этого при (Дж)2 + (Ду)2 Ф 0 функция z также получит некоторое приращение Дг, которое в силу дифференцируемости функции z = /(ж, у) в точке (х, у) может быть представлено в виде где а) стремятся к нулю при стремлении к нулю Ах и Ду. Доопределим а и /3 при Ах = Ау = 0, положив а Тогда а( будут непрерывны при Дж = Ду = 0. Рассмотрим отношение Имеем В каждом слагаемом^ в

Правой части (2) оба сомножителя имеют пределы при действительно, частные производные и ^ для данной являются постоянными, по условию существуют пределы из существования производных ^ и в точке £ следует непрерывность в этой точке функций х = y(t) и у = поэтому при At 0 стремятся к нулю и Дж и Ду, что в свою очередь влечет за собой стремление к нулю а(Дх, Ду) и Р(Ах, Ау). Таким образом, правая часть равенства (2) при 0 имеет предел, равный Значит, существует при At 0 и предел левой части (2), т. е. существует равный Переходя в равенстве (2) к пределу при At -» 0, получаем требуемую формулу В частном случае, когда , следовательно, z является сложной функцией от ж, получаем.

В формуле (5) есть частная производная фунадииг = /(ж, у) по ж, при вычи слении которой в выражении/(ж, у) аргумент у принимается за постоянную. А есть полная производная функции z по независимой переменной ж, при вычислении которой у в выражении /(ж, у) уже не принимается за постоянную, а считается в свою очередь функцией от ж: у = tp(x)t и поэтому зависимость z от ж учитывается полностью. Пример. Найти и jg , если 2. Рассмотрим теперь дифференцирование сложной функции нескольких переменных.

Пусть где в свою очередь так что Предположим, что в точке (() существуют непрерывные частные производные щ, 3?» а в соответствующей точке (ж,у), где Функция /(ж, у) дифференцируема. Покажем, что при этих условиях сложная фуншия z = z({} у) в точке t7) имеет производные и щ, и найдем выражения для этих производных.

Заметим, что этот случай от уже изученного существенно не отличается. Действительно, при дифференцировании z по £ вторая независимая переменная rj принимается за постоянную, вследствие чего ж и у при этой операции становятся функциями одной переменной ж" = с), у = с) и вопрос о производной Ц решается совершенно так же, как вопрос о производной при выводе формулы (3). Используя формулу (3) и формально заменяя в ней производные § и ^ на производные щ и соответственно, получим Аналогично находим Пример.

Найти частные производные ^ и ^ функции г = ж2 у - хуесли х - у = Если сложная функция « Задана формулами так что то при выполнении соответствующих условий имеем В частном случае, когда И = где Частные производные Геометрический смысл частных производных функции двух переменных Дифференцируемость функции нескольких переменных Необходимые условия дифференцируемости функции Достаточные условия дифференцируемсти функций нескольких переменных Полный дифференциал.

Частные дифференциалы Производные сложной функции имеем Здесь т- полная .частная производная функции и по независимой переменной х, учитывающая полную зависимость и от х, втомчисле и через z = z(x,y),a ^ —частная произврдная.функдодои и = /(г,у, г) по х, при вычислении к<!-- ?торой аргументы у и z прин имазртся за поводе ные. То же относится к. ^. -->