Химическая термодинамика

Химическая термодинамика

Вопросы лекции:

1. Энергетические эффекты химических реакций. Внутренняя энергия и энтальпия.

2. Основные понятия химической термодинамики. Первый закон термодинамики;

3. Термохимия. Тепловые эффекты и термохимические уравнения. Закон Гесса и следствие из него.

4. Стандартное состояние. Энтропия и ее изменение в химических реакциях.

5. Энергия Гиббса и Гельмгольца. Выявление возможностей направления и предела самопроизвольного протеканий химических реакций расчетом изменений ее термодинамических параметров.

Вопрос 1. Мы с вами знакомы с основными типами химических реакций и правилами составления химических уравнений.

Составив уравнение химической реакции, можно рассчитать количество продуктов этой реакции, которые образуются при условии полного превращения исходных веществ.

!!! Однако многие реакции протекают не до конца, а некоторые вообще невозможны при данных условиях. – Проблема?

Как известно, в соответствии с законом сохранения энергии возможен ряд преобразований энергии: химической энергии топлива в теплоту, теплоты в механическую энергию, механической – в электрическую, электрической вновь в механическую, и, наконец, механической – в теплоту. Но не все перечисленные преобразования равноценны друг другу: химическая, механическая, электрическая энергии могут целиком переходить в другие виды энергии (в том числе и в теплоту); теплота не в состоянии перейти полностью в другие виды энергии. - Почему?

Все виды энергии, кроме теплоты, являются энергиями упорядоченного движения микрочастиц, составляющих тело, или упорядоченного движения самих тел. (Электрическая энергия – это упорядоченное движение электрических зарядов под действием электрического напряжения; механическая энергия – энергия простейшего движения, представляющего собой изменение с течением времени пространственного расположения тел).

Теплота представляет собой энергию беспорядочного движения микрочастиц (молекул, атомов, электронов и т.д.) при переходе от одного тела к другому. Невозможность полного перехода теплоты в другие виды энергии объясняется невозможностью полной перестройки хаотического движения в упорядоченное.

Раздел химии, занимающийся изучением тепловых эффектов химических реакций, называется химической термодинамикой.

Слово термодинамика происходит от греческих слов «термос» (теплота) и «динамос» (сила, движение). Дословно, наука о движении.

Химическая термодинамика – наука о взаимопревращениях теплоты и энергии в химических реакциях.

Химическая термодинамика изучает: 1) энергетические эффекты, сопровождающие химические реакции;

2) направление и пределы их самопроизвольного протекания.

Знание закономерностей химической термодинамики позволяет:

- предсказать, возможно, ли в принципе химическое взаимодействие между данными веществами при определенных условиях;

- предсказать, до какой степени может протекать реакция прежде, чем установится химическое равновесие при данных условиях;

- выбрать оптимальные условия проведения процесса, обеспечивающие получение максимального выхода нужного продукта;

- рассчитать количество энергии, которое выделится при проведении реакции или необходимо затратить для ее осуществления.

Итак, знание законов химической термодинамики позволяет решать, не прибегая к эксперименту, многие задачи производственной и научно-исследовательской работы.

Химическая термодинамика основана на трех законах (трех началах), особенность которых состоит в том, что они не могут быть выведены, а являются результатом обобщения многовекового человеческого опыта. Правильность этих законов подтверждается тем, что не существует фактов, которые бы противоречили этим законам.

На сегодняшней лекции мы будем говорить о первом законе термодинамики. Но прежде, чем приступить к его рассмотрению вы должны овладеть основными понятиями химической термодинамики.

ВОПРОС 2. Основные понятия химической термодинамики. Первый закон термодинамики.

Основные понятия химической термодинамики мы введем, обратившись к конкретному примеру. Представим себе, что в эластичном и герметичном резиновом баллончике находится насыщенный раствор соли, нерастворенная соль в форме кристаллов и пар над раствором (рис.1,а).

Содержимое баллончика является объектом исследования, обычно называемым термодинамической системой. Тогда все, что находится вне системы, составляет окружающую среду.

Системаэто совокупность материальных объектов, отделенных каким-либо образом от окружающей среды.

Окружающая средаэто остальная часть пространства со всем, что в ней находится.

Термодинамическая системаэто совокупность тел, способных обмениваться друг с другом энергией и веществом и по-разному взаимодействующих с окружающей средой.

В рассматриваемом примере система может обмениваться с внешней средой только энергией, но не веществом. Такие системы принято называть замкнутыми, или закрытыми. Например, запаянная трубка, попеременно помещаемая в горячую и холодную среды, будет получать и отдавать энергию, но масса содержимого трубки будет оставаться постоянной.

Открытая система может обмениваться с другими системами как веществом, так и энергией. Например, кипящая вода в чайнике получает энергию от пламени, а при испарении теряет часть своей энергии и массы.

Изолированная система не обменивается с окружающей средой ни веществом, ни энергией и находится при постоянном объеме (изменение объема всегда связано с выполнением работы, а значит, с обменом энергией).

Например, термос.

Химические вещества, входящие в состав системы, называют компонентами.

Система называется гомогенной, если она одинакова по составу, структуре и свойствам во всех своих микроучастках (смесь газов, истинный раствор). Можно сказать, что состоит из одной фазы.

Фаза – это совокупность всех одинаковых по составу и однородных по структуре участков системы.

Система называется гетерогенной, если она состоит из нескольких фаз, разграниченных поверхностями раздела.

Все кристаллы льда в замерзающей воде образуют одну фазу, жидкая вода – другую, а пар – третью. Это однокомпонентная (Н2О) трехфазная (т.е. гетерогенная) система.

Состояние системы – это совокупность свойств (или параметров) системы, которые она имеет в данный момент. Изменение какого-либо параметра означает изменение состояния системы.

Основными параметрами состояния принято считать параметры, поддающиеся непосредственному измерению. К ним относятся температура, давление, плотность, мольный объем, концентрация (подписать внизу рисунка параметры состояния Р1, Т1, V1).

- Что произойдет, если баллончик нагреть, т.е. подвести энергию в виде теплоты?

Во-первых, температура повысится от Т1 до Т2.

Любое изменение одного или нескольких параметров системы называют термодинамическим процессом.

Повышение температуры, в свою очередь, вызовет изменение внутренней энергии системы (U), которая состоит из кинетической и потенциальной энергий составляющих ее частиц (молекул, электронов, нуклонов).

Внутренняя кинетическая энергия обусловлена тепловым хаотическим движением молекул, что непосредственно связано с температурой – с увеличением температуры тела интенсивность этого движения возрастает.

Внутренняя потенциальная энергия обусловлена взаимодействием частиц друг с другом (взаимное отталкивание или притяжение).

Абсолютное значение внутренней энергии ни измерить, ни рассчитать нельзя, можно определить только ее изменение в результате какого- либо процесса. Необходимо иметь в виду, что изменение внутренней энергии любой системы при переходе из одного состояния в другое не зависит от пути перехода, а определяется только начальным и конечным состоянием.

В нашем примере это значит, что можно сначала нагреть содержимое баллончика до температуры Т32. а потом снова охладить баллончик до температуры Т2. Это означает, что внутренняя энергия является функцией состояния, т.е. не зависит от пути процесса, а зависит от параметров системы.

Итак, повышение температуры, в свою очередь, вызовет изменение внутренней энергии системы:


Заметим, что при нагревании баллончика изменяется не только температура, но и концентрация раствора – часть соли дополнительно растворяется и увеличивается количество пара, т.е. происходит перераспределение масс.

За счет увеличения количества пара система совершает работу расширения:

A=P  V

Если внешнее давление постоянно, нагревание вызовет увеличение объема на величину V – баллончик раздуется подобно воздушному шару.

Таким образом, теплота (Q), сообщенная системой извне, расходуется на увеличение внутренней энергии (U), совершение работы расширения (А), других видов работ (Х) (в нашем случае работы по перераспределению масс веществ в системе):

Q=  U + A + X

Полученное уравнение есть ни что иное, как выражение первого начала термодинамики, являющегося частью всеобщего закона сохранения энергии.

Первое начало термодинамики можно сформулировать следующим образом:

Теплота, сообщаемая системе извне, расходуется на увеличение внутренней энергии и на работу расширения.

Существуют и другие формулировки первого начала термодинамики:

1. Разные формы ЭНЕРГИИ переходят друг в друга в строго эквивалентных, всегда одинаковых соотношениях.

2. В изолированной системе общий запас ЭНЕРГИИ является величиной постоянной.

3. Невозможен такой процесс, в котором РАБОТА совершалась бы без затраты ЭНЕРГИИ (вечный двигатель внутреннего сгорания не возможен).

Важно отметить, что ни работа, ни теплота не являются функциями состояния, т.е. зависят от пути протекания процесса, подобно тому, как длина дороги от Москвы до Петрозаводска зависит от того, ехать ли через Петербург или через Вологду.

Помимо рассмотренных выше функций в термодинамике вводят величины, которые тождественны сумме нескольких термодинамических параметров. Такая замена во многом облегчает расчеты. Так, функцию состояния, равную U+PV, называют энтальпией (Н):

Н = U + PV, H2 - H1=  H

Рассмотрим два частных случая изменения состояния системы:

1. Изохорный процесс – процесс, происходящий при постоянном объеме. V=const,  V=0  A=0, математическое выражение первого закона термодинамики принимает вид:

Qv=  U (1)

Т.о., вся теплота изохорного процесса идет на приращение внутренней энергии системы.

2. Изобарный процесс – процесс, происходящий при постоянном давлении. Р =const, работа за счет изменения объема равна А=Р(V2-V1)=P  V.

Учитывая выражение первого закона термодинамики, для изобарного процесса получим:

Qp=  U+A=U2- U1+PV2-PV1

Qp=(U2+ PV2)-(U1+ PV1)

Qp=H2-H1=  H (2)

Т.о., теплота изобарного процесса расходуется на приращение энтальпии.

Соотношения (1) и (2) позволяют оценить такие основополагающие в термодинамике величины, как изменение внутренней энергии и энтальпии, исходя их экспериментальных значений тепловых эффектов реакций. Тепловые эффекты химических реакций определяют с помощью калориметра.

Химическая реакция происходит в сосуде Дьюара 1- стеклянный сосуд с посеребренными внутри двойными стенками, из пространства между которыми выкачан воздух, вследствие чего стенки сосуда почти не проводят тепло. Для более равномерного теплообмена с окружающей средой сосуд помещают в большой термостат 2, наполненный водой (температура термостата во время опыта поддерживается постоянной). Сосуд закрыт крышкой 3 с тремя отверстиями: для термометра 4, мешалки 5, пробирки 6.

ВОПРОС 3. Тепловые эффекты и термохимические уравнения. Закон Гесса.

Раздел химической термодинамики, в котором изучают тепловые эффекты химических реакций и зависимость их от различных физико-химических параметров, носит название термохимии.

В термохимии пользуются термохимическими уравнениями реакций, в которых обязательно указывают агрегатное состояние вещества, а тепловой эффект реакции рассматривают как один из продуктов взаимодействия.

Например, реакция образования воды из простых веществ м.б. выражена термохимическим уравнением:

Н2(г) + 1/2О2(г) = Н2О(г) + 242 кДж

Это значит, что при образовании 1 моль газообразной воды выделяется 242 кДж теплоты. При этом изменение энтальпии  Н=-242кДж.

Все энергетические величины (тепловые эффекты, внутренняя энергия, энтальпия) обычно выражают в джоулях и относят к определенной порции вещества – молю (кДж/моль) или грамму (кДж/г).

Противоположные знаки величин  Н и Q означают, что энтальпия характеризует тепловые изменения в системе, а теплота – в окружающей среде. (это справедливо для случая, где отсутствуют другие виды работ, кроме работы расширения)

Процессы, идущие с выделением теплоты, называются экзотермическими. В них Q>0,  H<0 (теплосодержание системы уменьшается).

Процессы, в которых теплота поглощается, называются эндотермическими. В них Q<0,  H>0.

Важность учета агрегатного состояния объясняется тем, что переход из одного агрегатного состояния в другое связан энергетическими затратами, например:

Н2О(г)= Н2О(ж) + 44 кДж

Следовательно, тепловой эффект образования жидкой воды отличается от газообразной не величину теплоты испарения:

Н2(г) + ? О2(г)= Н2О(ж) + 286 кДж

Н2(г) + ? О2(г)= Н2О(г) + 242 кДж

Тепловые эффекты реакции можно не только измерять, но и рассчитывать по закону Гесса:

Если из данных веществ можно разными способами получить заданные продукты, то тепловой эффект во всех случаях будет одним и тем же.

Иными словами:

Тепловой эффект химической реакции не зависит от пути, по которому она протекает, а определяется только природой и состоянием исходных веществ и продуктов реакции.

Гесс подразумевал под тепловым эффектом реакции теплоту, которая поглощается или выделяется в результате реакции, проходящей либо при постоянном объеме, либо при постоянном давлении и в случае, если температуры исходных веществ равны.

Смысл закона Гесса ясен из энтальпийной диаграммы:


Вещество А можно превратить в вещество В двумя путями. 1-й путь: непосредственное превращение с тепловым эффектом  Н1. 2-путь: вначале А превращается в С(  Н2), а затем вещество С – в В(  Н3). По закону Гесса:

 Н1=  Н2+  Н3

Для расчета тепловых эффектов реакций большое практическое значение имеет следствие из закона Гесса:

Тепловой эффект химической реакции при стандартных условиях (Т=250С (289 К) и р= 1атм. (101325 Па)) равен сумме стандартных теплот образования продуктов за вычетом суммы стандартных теплот образования исходных веществ с учетом стехиометрических коэффициентов.

или:

Стандартная теплота (энтальпия) образования – это тепловой эффект образования 1 моль соединения из простых веществ, при условии, что все компоненты системы находятся в стандартных условиях. Предполагается, что простые вещества в этом случае находятся в своих наиболее устойчивых модификациях.

Стандартная теплота образования обозначается  (часто тот или иной индекс опускают).  или      , выражается в кДж/моль.

Стандартные теплоты образования простых веществ для тех агрегатных состояний, в которых эти вещества устойчивы при стандартных условиях, принимаются равными нулю. Если простое вещество при стандартных условиях может существовать в виде нескольких модификаций, то к нулю приравнивается  для наиболее устойчивой из модификаций. Так, графит является более устойчивой модификацией углерода, чем алмаз, поэтому  графита равна нулю,  алмаза 1,9 кДж. Молекулярный кислород О2 является наиболее устойчивой модификацией кислорода: менее устойчивы озон О3 и атомарный кислород О, поэтому  О2=0,  О=247,7кДж,  О3 = 142,3 кДж/моль.

Значения стандартной теплоты образования многих веществ приводятся в справочной литературе. При этом для удобства расчетов во многих случаях вычисляют и помещают в таблицы стандартные теплоты образования химических соединений в таких агрегатных состояниях, которые неустойчивы (и даже невозможны) при стандартных условиях. Например, в таблицы включают энтальпию образования водяного пара при стандартных условиях, равную –241,8 кДж/моль, хотя в этих условиях он переходит в жидкость.

Термохимическое уравнение, закон Гесса и следствия из него широко применяются для составления тепловых балансов производственных процессов и расчета технологической аппаратуры.

Например, требуется определить энтальпию сгорания монооксида азота, если известны энетальнии образовния:

NO(г) + ? О2(г) = NO2(г),  =? КДж

? N2(г) + ? О2 (г) =NO(г),  = 90,4 кДж

? N2(г) + О2 (г) =NO2(г),  =33,9 кДж

Для получения термохимического уравнения (1) нужно так сочетать известные нам уравнения (2) и (3), чтобы в результате исключить все не участвующие в реакции (1) вещества; для этого надо «перевернуть» уравнение (2) и сложить его с уравнением (3)