Сетки и сеточные функции.
1. Сетки и сеточные функции. Для того, чтобы написать разностную схему, приближенно описывающую данное дифференциальное уравнение, нужно совершить следующие два шага. 1. Необходимо заменить область непрерывного изменения аргумента областью дискретного его изменения. 2. Необходимо заменить дифференциальный оператор некоторым разностным оператором, а также сформулировать разностный аналог для краевых условий и для начальных данных. После осуществления такой процедуры мы приходим к алгебраической системе уравнений. Таким образом, задача о численном решении исходного (линейного) дифференциального уравнения сводится к вопросу о нахождении решения полученной алгебраической системы. Остановимся на этих вопросах несколько подробнее. При численном решении той или иной математической задачи мы, очевидно, не можем воспроизвести разностное решение для всех значений аргумента, изменяющегося внутри некоторой области евклидова пространства. Естественно поэтому выбрать в этой области некоторое конечное множество точек и приближенное решение искать только в этих точках, la кое множество точек называется сеткой, идельные точки называют узлами сетки. Функция, определенная в узлах сетки, называется сеточной функцией. Таким образом, мы заменили область непрерывного изменения аргумента сеткой, т. е. областью дискретного изменения аргумента; иными словами, мы осуществили аппроксимацию пространства решений дифференциального уравнения пространством сеточных функций. Свойства разностного решения и, в частности, его близость к точному решению зависят от выбора сетки. Рассмотрим несколько примеров сеток. Пример 1. Равномерная сетка на отрезке. Разобьем единичный отрезок равных частей. Расстояние между соседними узлами назовем шагом сетки. Точки деления узлы сетки. Множество всех узлов , и составляет сетку в данном случае введенную на отрезке. В это множество можно включить граничные точки Обозначим На отрезке [0, 1] вместо функции непрерывного аргумента у(х) будем рассматривать функцию дискретного аргумента . Значения этой функции вычисляются в узлах сетки а сама функция зависит от шага сетки h как от параметра. Пример 2. Равномерная сетка на плоскости. Рассмотрим множество функций двух аргументов . В качестве области определения выберем прямоугольник Разобьем отрезки оси t соответственно на частей; пусть Через точки деления проведем прямые, параллельные соответствующим осям Эта сетка имеет шаги h и т соответственно по направлениям х и t. Соседними узлами сетки называются узлы, лежащие на од Вместо функций и(х) непрерывного аргумента П будем рассматривать сеточные функции , т. е. функции точки хи являющейся узлом сетки Сеточную функцию y(Xi) можно представить в виде вектора. Если перенумеровать все узлы в некотором порядке , то значения сеточной функции в этих узлах можно рассматривать как компоненты вектора Если область G, в которой построена сетка, конечна, то размерность N вектора Y конечна. В случае неограниченной области G сетка состоит из бесконечного числа узлов и размерность вектора Y также бесконечна. Обычно рассматриваются множества сеток , зависящих от шага Л как от параметра. Поэтому и сеточные функции ун{х) зависят от параметра h (или от числа узлов N в случае равномерной сетки). Если сетка <ол неравномерна, то под h следует понимать вектор с компонентами Аь ... ..., hy. Это же замечание относится и к случаю, когда область G многомерный, тогда ), если сетка о)/, равномерна по каждому из аргументов Функции и(х) непрерывного аргумента дявляются элементами некоторого функционального пространства //о- Множество сеточных функций уи(х) образует пространство Hfl. Таким образом, используя метод конечных разностей, мы заменяем пространство #о пространством сеточных функций Рассматривая множество сеток , получаем множество пространств сеточных функций, зависящих от параметра А. На линейном пространстве вводится норма ¦М1л> являющаяся сеточным аналогом нормы ¦М1о в исходном пространстве И0. Укажем простейшие типы норм в Ни для случая сеток на отрезке Сеточный аналог нормы Пусть u(x) — решение исходной непрерывной задачи, и е И о, уи—решение приближенной (разностной) задачи, уи^Ни- Основной интерес для теории .приближенных методов представляет оценка близости уи к и. Однако у и и и являются векторами из разных пространств. Имеются две возможности: 1. Сеточная функция i/;„ заданная в узлах доопределяется (например, при помощи линейной интерполяции) во всех остальных точках х области G. В результате получаем функцию y(x,h) непрерывного аргумента х е G. Разность принадлежит Н0. Близость уи к и характеризуется числом ¦ Но, где II• Но — норма на Н0. 2. Пространство Н0 отображается на пространство Я/,. Каждой функции м(л') еЯ0 ставится в соответствие сеточная функция , так что и/, = е Ял, где — линейный оператор из Но в Ни. Это соответствие можно осуществить различными способами (выбирая разные операторы Если и(х)—непрерывная функция, то полагаем и, где Иногда определяют в узле как интегральное среднее значение и(х) по некоторой окрестности (например, диаметра 0(h)) данного узла . В дальнейшем всюду будем предполагать, что и(х) непрерывная функция и для всех Имея сеточную функцию uh, образуем разность yh — «,„ являющуюся вектором пространства Ни. Близость уи к и характеризуется числом IIуи — где — норма на Hh. При этом естественно требовать, чтобы норма 1М1л аппроксимировала норму ¦¦ • Но в следующем смысле: для любого вектора и из На. Это условие будем называть условием согласования норм в Мы всюду используем второй путь, исследуем погрешность разностных методов в пространстве сеточных функций. В большинстве случаев эти пространства являются конечномерными. Как будет показано в дальнейшем, оказывается возможным провести изложение основных вопросов теории разностных схем, трактуя Ни как абстрактные линейные пространства любой размерности. После того, как мы познакомились на простейших примерах со способами построения сеток и тем самым пространств Ни сеточных функций, перейдем к вопросу о разностной аппроксимации дифференциальных операторов.