ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ
В этой главе речь пойдет о первичных, неразложимых далее частицах, из которых построена вся материя. ТРИ ЭТАПА В РАЗВИТИИ ФИЗИКИ ЭЛЕМЕНТАРНЫХ ЧАСТИЦ Вы уже более или менее знакомы с электроном, фотоном, протоном и нейтроном. Но что же такое элементарная частица? Этап первый. От электрона до позитрона: 1897—1932 гг. (Элементарные частицы — «атомы Демокрита» на более глубоком уровне.) Когда греческий физик Демокрит назвал простейшие нерасчленимые далее частицы атомами (слово атом, напомним, означает «неделимый»), то ему, вероятно, все представлялось в принципе не очень сложным. Различные предметы, растения, животные состоят из неделимых, неизменных частиц. Превращения, наблюдаемые в мире,— это простая перестановка атомов. Все в мире течет, все изменяется, кроме самих атомов, которые остаются неизменными. Но в конце XIX века было открыто сложное строение атомов и был выделен электрон как составная часть атома. Затем, уже в XX веке, были открыты протон и нейтрон — частицы, входящие в состав атомного ядра. Поначалу на все эти частицы смотрели точно так, как Демокрит смотрел на атомы: их считали неделимыми и неизменными первоначальными сущностями, основными кирпичиками мироздания. Этап второй. От позитрона до кварков: 1932—1964 гг. (Все элементарные частицы превращаются друг в друга.) Ситуация привлекательной ясности длилась недолго. Все оказалось намного сложнее: как выяснилось, неизменных частиц нет совсем. В самом слове элементарная заключается двоякий смысл. С одной стороны, элементарный — это само собой разумеющийся, простейший. С другой стороны, под элементарным понимается нечто фундаментальное, лежащее в основе вещей (именно в этом смысле сейчас и называют субатомные частицы1 элементарными). Считать известные сейчас элементарные частицы подобными неизменным атомам Демокрита мешает следующий простой факт. Ни одна из частиц не бессмертна. Большинство частиц, называемых сейчас элементарными, не может прожить более двух миллионных долей секунды, даже в отсутствие какого-либо воздействия извне. Свободный нейтрон (нейтрон, находящийся вне атомного ядра) живет в среднем 15 мин. Субатомные частицы — частицы, из которых состоят атомы. Лишь частицы фотон, электрон, протон и нейтрино сохраняли бы свою неизменность, если бы каждая из них была одна в целом мире (нейтрино лишено электрического заряда, и его масса покоя, по-видимому, равна нулю). Но у электронов и протонов имеются опаснейшие собратья — позитроны и антипротоны, при столкновении с которыми происходит взаимное уничтожение этих частиц и образование новых. Фотон, испущенный настольной лампой, живет не более Ю-8 с. Это то время, которое ему нужно, чтобы достичь страницы книги и поглотиться бумагой. Лишь нейтрино почти бессмертны, так как они чрезвычайно слабо взаимодействуют с другими частицами. Однако и нейтрино гибнут при столкновении с другими частицами, хотя такие столкновения случаются крайне редко. Итак, в вечном стремлении к отысканию неизменного в нашем изменчивом мире ученые оказались не на «гранитном основании», а на «зыбком песке». Все элементарные частицы превращаются друг в друга, и эти взаимные превращения — главный факт их существования. Превращения элементарных частиц ученые наблюдали при столкновениях частиц высоких энергий. Представления о неизменности элементарных частиц оказались несостоятельными. Но идея об их неразложимости сохранилась. Элементарные частицы уже далее неделимы, но они неисчерпаемы по своим свойствам. Вот что заставляет так думать. Пусть у нас возникло естественное желание исследовать, состоит ли, например, электрон из каких-либо других субэлементарных частиц'. Что нужно сделать для того, чтобы попытаться расчленить электрон? Можно придумать только один способ. Это тот же способ, к которому прибегает ребенок, если он хочет узнать, что находится внутри пластмассовой игрушки,— сильный удар. Разумеется, по электрону нельзя ударить молотком. Для этого можно воспользоваться другим электроном, летящим с огромной скоростью, или какой-либо иной, движущейся с большой скоростью элементарной частицей. Современные ускорители сообщают заряженным частицам скорости, очень близкие к скорости света. Что же происходит при столкновении частиц сверхвысокой энергии? Они отнюдь не дробятся на нечто такое, что можно было бы назвать их составными частями. Нет, они рождают новые частицы из числа тех, которые уже фигурируют в списке элементарных частиц. Чем больше энергия сталкивающихся частиц, тем большее количество, и притом более тяжелых, частиц рождается. Это возможно ' Подразумеваются частицы, из которых состояли бы известные сейчас элементарные частицы. благодаря тому, что при увеличении скорости масса частиц растет. Всего лишь из одной пары любых частиц с возросшей массой можно в принципе получить все известные на сегодняшний день частицы. На рисунке 269 вы видите результат столкновения ядра углерода, имевшего энергию 60 млрд эВ (жирная верхняя линия), с ядром серебра фотоэмульсии. Ядро раскалывается на осколки, разлетающиеся в разные стороны. Одновременно рождается много новых элементарных частиц — пионов. Подобные реакции при столкновениях релятивистских ядер, полученных в ускорителе, впервые в мире осуществлены в лаборатории высоких энергий Объединенного института ядерных исследований в г. Дубне под руководством академика А. М. Балдина. Лишенные электронной оболочки ядра были получены путем ионизации атомов углерода лазерным лучом. Возможно, конечно, что при столкновениях частиц с недоступной пока нам энергией будут рождаться и какие-то новые, еще неизвестные частицы. Но сути дела это не изменит. Рождаемые при столкновениях новые частицы никак нельзя рассматривать как составные части частиц — «родителей». Ведь «дочерние» частицы, если их ускорить, могут, не изменив своей природы, а только увеличив массу, породить, в свою очередь, при столкновениях сразу несколько таких же в точности частиц, какими были их «родители», да еще и множество других частиц. Итак, по современным представлениям, элементарные частицы — это первичные, неразложимые далее частицы, из которых построена вся материя. Однако неделимость элементарных частиц не означает, что у них отсутствует внутренняя структура. Этап третий. От гипотезы о кварках (1964 г.) до наших дней. (.Большинство элементарных частиц имеет сложную структуру.) В 60-е годы возникли сомнения в том, что все частицы, называемые сейчас элементарными, полностью оправдывают это название. Основание для сомнений простое: этих частиц очень много. Открытие новой элементарной частицы всегда составляло и сейчас составляет выдающийся триумф науки. Но уже довольно давно к каждому очередному триумфу начала примешиваться доля беспокойства. Триумфы стали следовать буквально друг за другом. Была открыта группа так называемых странных частиц: Л"-мезонов и гиперонов с массами, превышающими массу нуклонов. В 70-е годы к ним прибавилась большая группа частиц с еще большими массами, названных очарованными. Кроме того, были от крыты короткоживущие частицы с временем жизни порядка 10 22— Ю-23 с. Эти частицы были названы резонансами, и их число перевалило за двести. Вот тогда-то (в 1964 г.) М. Гелл-Манноном и Дж. Цвейгом была предложена модель, согласно которой все частицы, участвующие в сильных (ядерных) взаимодействиях,— адроны1 — построены из более фундаментальных (или первичных) частиц — кварков. 2 1 Кварки имеют дробный электрический заряд + -у е и — -у е. Протоны и нейтроны состоят из трех кварков. В настоящее время в реальности кварков никто не сомневается, хотя в свободном состоянии они не обнаружены и, вероятно, не будут обнаружены никогда. Существование кварков доказывают опыты по рассеянию электронов очень высокой энергии на протонах и нейтронах. Число различных кварков равно шести. Кварки, насколько сейчас известно, лишены внутренней структуры и в этом смысле могут считаться истинно элементарными. Легкие частицы, не участвующие в сильных взаимодействиях, называются лептонами. Их тоже шесть, как и кварков (электрон, три вида нейтрино и еще две частицы — мюон и тау-лептон с массами, значительно большими массы электрона). Кварки и лептоны истинно элементарные частицы.