СВЕТОВЫЕ КВАНТЫ ФОТОЭФФЕКТ
Квантовым законам подчиняется поведение всех микрочастиц. Но впервые квантовые свойства материи были обнаружены при исследовании излучения и поглощения света. ФОТОЭФФЕКТ В развитии представлений о природе света важный шаг был сделан при изучении одного замечательного явления, открытого Г. Герцем и тщательно исследованного выдающимся русским физиком Александром Григорьевичем Столетовым. Явление это получило название фотоэффекта. Фотоэффект — это вырывание электронов из вещества под действием света. Наблюдение фотоэффекта. Для обнаружения фотоэффекта можно использовать электрометр с присоединенной к нему цинковой пластиной (рис. 236). Если зарядить пластину положительно, то ее освещение, например электрической дугой, не влияет на быстроту разрядки электрометра. Но если пластину зарядить отрицательно, то световой пучок от дуги разряжает электрометр очень быстро. Объяснить это можно так. Свет вырывает электроны с поверхности пластины. Если она заряжена отрицательно, электроны от Столетов Александр Григорьевич (1839—1896) — русский физик. Исследование фотоэффекта доставило Столетову мировую известность. Столетов показал также возможность применения фотоэффекта на практике. В докторской диссертации «Исследование о функции намагничения мягкого железа» он разработал метод исследования ферромагнетиков и установил вид кривой намагничения. Эта работа широко использовалась на практике при конструировании электрических машин. Столетов явился инициатором создания физического института при Московском университете. талкиваются от нее и электрометр разряжается. При положительном же заряде пластины вырванные светом электроны притягиваются к пластине и снова оседают на ней. Поэтому заряд электрометра не изменяется. Однако, когда на пути света поставлено обыкновенное стекло, отрицательно заряженная пластина уже не теряет электроны, какова бы ни была интенсивность излучения. Так как известно, что стекло поглощает ультрафиолетовые лучи, то из этого опыта можно заключить: именно ультрафиолетовый участок спектра вызывает фотоэффект. Этот несложный факт нельзя объяснить на основе волновой теории света. Непонятно, почему световые волны малой частоты не могут вырывать электроны, если даже амплитуда волны велика и, следовательно, велика сила, действующая на электроны. Законы фотоэффекта. Для того чтобы получить о фотоэффекте более полное представление, нужно выяснить, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. С этой целью были проведены экспериментальные исследования. В стеклянный баллон, из которого выкачан воздух, помещаются два электрода (рис. 237). Внутрь баллона на один из электродов поступает свет через кварцевое окошко, прозрачное не только для видимого света, но и для ультрафиолетового излучения. На электроды подается напряжение, которое можно менять с помощью потенциометра и измерять вольтметром. К освещаемому электроду присоединяют отрицательный полюс батареи. Под действием света этот электрод испус-движении в электрическом поле образуют электрический ток. При малых напряжениях не все вырванные светом электроны достигают другого электрода. Если, не меняя интенсивности излучения, увеличивать разность потенциалов между электродами, то сила тока возрастает. При некотором напряжении она достигает максимального значения, после чего перестает увеличиваться (рис. 238). Максимальное значение силы тока /н называется током насыщения. Ток насыщения определяется числом электронов, испущенных за 1 с освещаемым электродом. Изменяя в этом опыте интенсивность излучения, удалось установить, что количество электронов, вырываемых светом с поверхности металла за 1 с, прямо пропорционально поглощаемой за это время энергии световой волны. В этом ничего неожиданного нет: чем больше энергия светового пучка, тем эффективнее его действие. Теперь остановимся на измерении кинетической энергии (или скорости) электронов. Из графика, приведенного на рисунке 238, видно, что сила фототока отлична от нуля и при нулевом напряжении. Это означает, что часть вырванных светом электронов достигает правого (см. рис. 237) электрода и при отсутствии напряжения. Если изменить полярность батареи, то сила тока уменьшится и при некотором напряжении U3 обратной полярности она станет равной нулю. Это значит, что электрическое поле тормозит вырванные электроны до полной остановки, а затем возвращает их на электрод. Задерживающее напряжение U3 зависит от максимальной кинетической энергии, которую имеют вырванные светом электроны. Измеряя задерживающее напряжение и применяя теорему о кинетической энергии (см. учебник физики для X класса), можно найти максимальное значение кинетической энергии электронов: При изменении интенсивности света (плотности потока излучения) задерживающее напряжение, как показали опыты, не меняется. Значит, не меняется кинетическая энергия электронов. С точки зрения волновой теории света этот факт непонятен. Ведь, чем больше интенсивность света, тем большие силы действуют на электроны со стороны электромагнитного поля световой волны и тем большая энергия, казалось бы, должна передаваться электронам. На опытах было обнаружено, что кинетическая энергия вырываемых светом электронов зависит только от частоты света. Максимальная кинетическая энергия фотоэлектронов линейно возрастает с частотой света и не зависит от его интенсивности. Если частота света меньше определенной для данного вещества минимальной частоты vmin, то фотоэффект не происходит. Законы фотоэффекта просты по форме. Но зависимость кинетической энергии электронов от частоты выглядит загадочно. 1. Чему равна постоянная Планка? 2. В чем состоят основные законы фотоэффекта!