Круги Эйлера фигуры условно изображающие множества

Круги Эйлера фигуры, условно изображающие множества.

Круги Эйлера фигуры, условно изображающие множестваКруги Эйлера фигуры, условно изображающие множестваКруги Эйлера фигуры, условно изображающие множестваКруги Эйлера фигуры, условно изображающие множестваКруги Эйлера фигуры, условно изображающие множестваКруги Эйлера фигуры, условно изображающие множестваКруги Эйлера фигуры, условно изображающие множества





Круги Эйлера фигуры, условно изображающие множества




кругами Эйлера называют фигуры, условно изображающие множества и наглядно иллюстрирующие некоторые свойства операций над множествами. В литературе круги Эйлера иногда называют диаграммами Вен на (или диаграммами Эйлера — Венна). Круги Эйлера, иллюстрирующие основные операции над множествами, представлены на рис. 1.2 (множества, полученные в результате этих операций, отмечены штриховкой). АПВ 00 АЬВ Рис. 1.2 Пример 1.8. При помощи кругов Эйлера установим сначаг ла справедливость первого соотношения, выражающего свойство дистрибутивности операций объединения и пересечения множеств,

  • На рис. 1.3,а вертикально заштрихован круг, изображающий множество А) а горизонтально — область, отвечающая пересечению множеств В и С. В итоге тем или иным способом заштрихована область, изображающая множество A U (БПС). На рис. 1.3,5 вертикально заштрихована область, соответствующая объединению множеств Л и Б, а горизонтально — объединению множеств Л и С, так что обоими способами заштрихована область, изображающая множество (A U В) П (A U С) и совпадающая с областью, заштрихованной каким-либо способом на рис. 1.3,а. Таким образом, круги Эйлера позволяют установить справедливость (1.10).
  • Теперь рассмотрим второй закон де Моргана (1.7) Заштрихованная на рис. 1.4,а область изображает множество ЛИВ, а незаштрихованная часть прямоугольника Q (внешняя по отношению к заштрихованной) соответствует множеству ЛПВ. На рис. 1.4,5 части прямоугольника 12, заштрихованные вертикально и горизонтально, отвечают соответственно А и В. Тогда множеству Ли В отвечает область, заштрихованная хотя бы одним из указанных способов. Она совпадает с областью, не заштрихованной на рис. 1.4,а и отвечающей множеству ЛПБ, что устанавливает справедливость (1.11). Вопросы и задачи 1.1.

Запись m|n, где m,n € Z, означает, что число m нацело делит число п (то - делитель п). Описать заданные множества при условии, что х € N: 1.2. Доказать следующие соотношения и проиллюстрировать их кругами Эйлера: . 1.3. Установить, в каком отношении (X С Y, X Э У или X = Y) находятся множества X и У, если: а Использовать для иллюстрации круги Эйлера. 1.4. Пусть Aj - множество точек, образующих стороны некоторого треугольника, вписанного в заданную окружность. Описать объединение и пересечение всех таких множеств, если треугольники: а) произвольные; б) правильные; в) прямоугольные. Найти IK и flAi ieN i en для заданных семейств множеств: 1.6. Указать, какие из представленных ниже соотношений неверны, и объяснить, почему: 1.7.


Примеры решения в задачах




Методические указания и учебники решения и формулы
задачи и методички
теория



Указать, какие из множеств равны между собой: . 1.8. Найти множества Ли В, АГВ, АВ, ВА и изобразить их на числовой прямой, если А = ( 1.0. Считая отрезок [0, 1] универсальным множеством, найти и изобразить на числовой прямой дополнения множеств: . 1.10. По приведенным ниже описаниям множеств людей подберите для каждой записи высказывания на языке множеств подходящую пословицу или поговорку. Надеемся, что это позволит лишний раз проанализировать смысл народных изречений. Например, если Z —множество людей, которые сами как следует не знают того, о чем говорят, то запись х £ Z можно отнести к пословице „Слышал звон, да не знает, где он, поскольку именно так говорят о человеке, наделенном указанным свойством (в данном случае — характеристическим свойством множества Z, см. 1.1).

Множества людей ft - универсальное множество всех людей, Л - добрые, 5е В - незаурядные, с большими способностями, С - глупые, D - умные, Е - поступающие по своему, не слушающие советов, F - связанные корыстными отношениями, G - много обещающие, Я - не выполняющие своих обещаний, J - злоупотребляющие своим служебным положением, К - слишком важничающие, задающиеся, L - вмешивающиеся не в свое дело, М - предприимчивые, ловкие, умеющие устраиваться, Р - берущиеся за несколько дел сразу, Q - плодотворно работающие, S - ошибающиеся, Т - чувствующие вину и возможность расплаты, U - не добивающиеся результатов, V - выдающие себя своим поведением, W- недальновидные, X - действующие заодно, не предающие друг друга, У - бывалые, опытные люди. Запись высказываний на языке множеств хеК; xeGnH; xCBCiQ; x£jrU; xeJ; хеМ; хеСПЕ; xCTnV; xEPDU; xGE; x € FnX; xeYnS; xeDOW. Пословицы и поговорки - Бодливой корове бог рог не дает. - Большому кораблю — большое плавание. - Вольному воля. - Ворон ворону глаз не выклюет. - Дуракам закон не писан. - За двумя зайцами погонишься, ни одного не поймаешь. -

  • Знает кошка, чье мясо съела. - Знай сверчок свой шесток. - И на старуху бывает проруха. - Курице не тетка, свинье не сестра. - Кто смел, тот и съел. - На всякого мудреца довольно простоты. - Наделала синица славы, а море не зажгла. - Свет не без добрых людей. 1.11.
  • Доказать справедливость соотношений (1.2). 1.12.
  • Доказать справедливость второго из соотношений свойства дистрибутивности операций объединения и пересечения непосредственно и методом от противного. 1.13. Применив метод математической индукции, докаг -эать, что для любого натурального числа п справедливы неравенства п^2п~1 и (l + :r)n ^ 1 + ns, Vs>-1 (неравенство Бернулли). 1.14.
  • Доказать, что среднее арифметическое п положительных действительных чисел не меньше их среднего геометрического, т.е. п 1.15. Брауну, Джонсу и Смиту решение задач по высшей математике предъявлено обвинение в соучастии в ограблении банка. Похитители скрылись на поджидавшем их автомобиле. На следствии Браун показал, что это был синий „Бьюик", Джонс — голубой „Крайслер", а Смит — „Форд Мустанг", но не синий.

Какого цвета был автомобиль и какой марки, если известно, что, желая запутать следствие, каждый из них указал правильно либо только марку машины, либо только ее цвет? 1.1в. Для полярной экспедиции из восьми претендентов А, В, С, Д J5, F, G и Я надо отобрать шесть специалистов: биолога, гидролога, синоптика, радиста, механика и врача. Обязанности биолога могут выполнять Е и G, гидролога — В и F, синоптика — F и G, радиста — С и Д механика — С и Я, врача — А и Д но каждый из них, если будет в экспедиции, сможет выполнять лишь одну обязанность. Кого и кем следует взять в экспедицию, если F не может ехать без D — без Я и без С, С не может ехать с G, а Д — с В?