Электромагнитные колебания
простейшая система в которой могут происходить свободные электромагнитные колебания, состоит из конденсатора и катушки Электромагнитные колебания бы- Up ли открыты в известной мере случайно. После того как изобрели лейденскую банку (первый конденсатор) и научились сообщать ей большой заряд с помощью электростатической машины, начали изучать электрический разряд банки. Замыкая обкладки лейденской банки с помощью проволочной катушки, обнаружили, что стальные спицы внутри катушки намагничиваются. В этом ничего странного не было: электрический ток и должен намагничивать стальной сердечник ка'гушки. Удивительным было то, что нельзя было предсказать, какой конец сердечника катушки окажется северным полюсом, а какой — южным. Повторяя опыт примерно в одинаковых условиях, получали в одних случаях один результат, а в других — другой. Далеко не сразу поняли, что при разрядке конденсатора через катушку возникают колебания. За время разрядки конденсатор успевает много раз перезарядиться, и ток меняет направление много раз, в результате чего сердечник может намагничиваться различным образом. Периодические или почти периодические изменения заряда, силы тока и напряжения называются электромагнитными колебаниями. Обычно эти колебания происходят с очень большой частотой, значительно превышающей частоту механических колебаний. Поэтому для их наблюдения и исследования самым подходящим прибором является электронный осциллограф. В электронно-лучевой трубке осциллографа узкий пучок электронов попадает на экран, способный светиться при бомбардировке его электронами. На горизонтально отклоняющие пластины трубки подается переменное напряжение развертки ыр пилообразной формы (рис. 70). Сравнительно медленно напряжение нарастает, а потом очень резко уменьшается. Электрическое поле между пластинами заставляет электронный луч пробегать экран в горизонтальном направлении с постоянной скоростью и затем почти мгновенно возвращаться назад. После этого весь процесс повторяется. Если теперь присоединить вертикально отклоняющие пластины трубки к конденсатору, то колебания напряжения при его разрядке вызовут колебания луча в вертикальном направлении. В результате на экране образуется присоединенной к его обкладкам (рис. 73). Такая система называется колебательным контуром. Рассмотрим, почему в контуре возникают колебания. Зарядим конденсатор, присоединив его на некоторое время к батарее с помощью переключателя (рис. 74, а). При этом конденсатор получит энергию где qm — заряд конденсатора, а С — его электроемкость. Между обкладками конденсатора возникнет разность потенциалов Um. Переведем переключатель в положение 2 (рис. 74, б). Конденсатор начнет разряжаться, и в цепи появится электрический ток. Сила тока не сразу достигает максимального значения, а увеличивается постепенно. Это обусловлено явлением самоиндукции. При появлении тока возникает переменное магнитное поле. Это переменное магнитное поле порождает вихревое электрическое поле в проводнике. (Об этом рассказывалось в главе 2.) Вихревое электрическое поле при возрастании магнитного поля действует против тока и препятствует его мгновенному увеличению. По мере разрядки конденсатора энергия электрического поля уменьшается, но одновременно возрастает энергия магнитного поля тока, которая определяется формулой где i — сила переменного тока; L дуктивность катушки. Полная энергия W электромагнитного поля контура равна сумме энергий магнитного и электрического полей: В момент, когда конденсатор полностью разрядится (<7=0), энергия электрического поля станет равной нулю. Энергия же магнитного поля тока согласно закону сохранения энергии будет максимальной. В этот момент сила тока также достигнет максимального значения 1т. Несмотря на то что к этому моменту разность потенциалов на концах катушки становится равной нулю, электрический ток не может прекратиться сразу. Этому препятствует явление самоиндукции. Как только сила тока и созданное им магнитное поле начнут уменьшаться, возникает вихревое электрическое поле, которое поддерживает ток. В результате конденсатор будет перезаряжаться до тех пор, пока сила тока, постепенно уменьшаясь, не станет равной нулю. Энергия магнитного поля в этот момент также будет равна нулю, энергия электрического поля конденсатора опять станет максимальной. После этого конденсатор вновь начнет перезаряжаться, и система возвратится в исходное состояние. Если бы не было потерь энергии, то этот процесс продолжался бы сколь угодно долго. Колебания были бы незатухающими. Через промежутки времени, равные периоду колебания, состояние системы в точности повторялось бы. Полная энергия при этом сохранялась бы, и ее значение в любой момент времени было бы равно максимальной энергии электрического поля или максимальной энергии магнитного поля: Но в действительности потери энергии неизбежны. Так, в частности, катушка и соединительные провода обладают сопротивлением R, а это ведет к постепенному превращению энергии электромагнитного поля во внутреннюю энергию проводника. В колебательном контуре энергия электрического поля заряженного конденсатора периодически превращается в энергию магнитного поля тока. При отсутствии сопротивления полная энергия электромагнитного поля остается неизменной. 1. Можете ли вы изготовить колебательный контур! 2. Чему равна энергия контура в произвольный момент времени!