Асимптотические методы решения дифференциальных уравнений

Содержание:

  1. Лемма:
  2. Периодическое решение

Асимптотические методы решения дифференциальных уравнений

Асимптотические методы решения дифференциальных уравнений

Асимптотические методы решения дифференциальных уравнений

Асимптотические методы решения дифференциальных уравнений

Асимптотические методы решения дифференциальных уравнений

Асимптотические методы решения дифференциальных уравнений

Асимптотические методы решения дифференциальных уравнений

Асимптотические методы решения дифференциальных уравнений

Асимптотические методы решения дифференциальных уравнений

 

По этой ссылке вы найдёте полный курс лекций по математике:

Решение задач по математике

 

Асимптотические методы позволяют отыскивать приближенные решения дифференциальных уравнений (или систем), близких к таким уравнениям (или системам), решения которых известны. В прикладных задачах часто бывает, что на течение рассматриваемого физического процесса влияют как основные факторы, определяющие ход процесса, так и другие факторы, оказывающие меньшее влияние и меняющие количественные характеристики процесса.

При учете только основных факторов можно получить точное решение системы уравнений, а при учете всех известных факторов система становится сложной и не решается. В таких случаях асимптотические методы часто позволяют найти решение с нужной точностью. Разложение решения по степеням малого параметра — один из наиболее употребительных асимптотических методов.

Следствие теоремы 2. Пусть при (t,x) выполнены условия теоремы 2, и при решение задачи (1) проходит в области D; t0 £ [tl9t2]- Тогда решение x(t, р) задачи (1) при t разлагается по формуле Тейлора по степеням параметра ц до цт включительно: Асимптотические методы решения дифференциальных уравнений Здесь х(Ь9ц) и v^t) — n-мерные вектор-функции, v0(t) = 0) есть решение системы (1) при \i = 0, оно считается известным.

Чтобы найти надо подставить разложение (12) в систему (1) и начальные условия, и разложить правые части по степеням /х до /хт включительно. Далее надо приравнять коэффициенты при одинаковых степенях /х. Получается для vx,...9vm система дифференциальных уравнений с начальными условиями. Последовательно решая уравнения системы и пользуясь начальными условиями, находим ..., vm(£). Пример 2. Найти разложение решения задачи по степеням параметра /х до /х2 включительно.

Решение примера. Правая часть уравнения в области х > 0 име- ет производные любого порядка по ж,/х. Условия теоремы 2 выполнены для любого т, пока решение задачи (13) с \l = О проходит в области х > 0. При = 0 задача (13) принимает вид dx/dt = t/x, 1, и имеет решение ж(*) = t, оно проходит в области х > 0 при t > 0. Поэтому v0(*) = t (t > 0).

Разложение х = t + /iv1 +/i2v2 + о(/л2) подставляем в уравнение и начальные условия (13), члены порядка o(/i2) не пишем. Разлагаем дробь в (14) по степеням /х, члены с цк, к > 2, не пишем. Подставляем это в (14) и приравниваем коэффициенты слева и справа при одинаковых степенях параметра /х: при v\ = -^-2t\ М0 = 4; (16> при Ц = + «2(l) = i (17) Здесь начальные условия получены из (15). Все дифференциаль- ные уравнения для v{9..., vm всегда линейные. Из (16) получаем Vj = — у.

 

Возможно вам будут полезны данные страницы:

Стехиометрические соотношения в химии
Построение прямой линии параллельно плоскости
Понятие обратной функции. Производная обратной функции
Оператор Гамильтона. Оператор Лапласа. Понятие о криволинейных координатах

 

Подставляя это в (17), находим v2 = + fj. Итак, Так как условия теоремы 2 выполнены для любого m ^ 2, то следующий член разложения имеет вид p3v3(t) и, не находя vy в (18) вместо o(/i2) можно написать 0(fi3). Задачи для упражнений: [ | 3« | Отыскание периодических решений. Нижеследующие лемма 2 и теорема 3 дают условия существования периодических решений соответственно для линейной системы с периодической правой частью и для нелинейной системы, близкой к линейной, и указывают методы отыскания таких решений.

Лемма:

Пусть при 0 вектор-функция x(t) — решение уравнения х' = f(t, х), где вектор-функция f и все dfjdxj непрерывный f(t+p, х) = f(t, х). Если х(р) = ж(0), то решение x(t) продолжается на интервал (-оо, оо) с периодом р. Доказательство. Так как Асимптотические методы решения дифференциальных уравнений то продолженная с периодом р функция x(t) 6 С1.

Она всюду удовлетворяет данному уравнению, ибо для любого k € Z имеем Лемма 2. Если для всех собственных значений матрицы А имеем то система х1 = Ах + f(t) для каждой непрерывной функции f(t) с периодом р имеет (и только одно) решение с периодом р. Условие (19) называется условием отсутствия резонанса. Доказательство. Пусть v(£) — частное решение данной системы с v(0) = 0. В силу теоремы 5 § 9 и следствия 1 § 15 общее решение имеет вид х = etAb + v(t), где Ь — произвольный вектор из Rn.

Чтобы это решение имело период р, по лемме 1 надо, чтобы х(р) = ж(0). То есть Это — линейная алгебраическая система относительно неизвестных координат вектора Ь. Для существования единственного решения достаточно, чтобы det (ерА - 1 • Е) Ф 0, то есть чтобы матрица не имела собственных значений, равных 1. Если АР...,АП — собственные значения матрицы А> то согласно замечанию в имеет собственные значения Для А = а + /3i имеем = е?" (cos р/3 + tsinp/5). Это число равно 1 только в случае а = 0, рр = 2*кку к = 0,±1,±2,....

Поэтому при условии (19) имеем Теорема 3. Пусть функции f(t), g(t9 х, р) непрерывны при имеют период , где т ^ 1. Пусть выполнено условие (19) и решение x°(t) с периодом р уравнения х Ах + f(t) содержится в области D. Тогда при всех достаточно малых |/*| система имеет решение периода р по t, стремящееся Такое решение единственно и принадлежит классу Ст по ц. -7- Доказательство.

Пусть х(Ь\Ъ,ц) — решение системы (20) с начальным условием ж(0; ц) = Ь. По лемме 1 оно будет иметь период р, если Докажем, что при малых \l существует Ь € R", удовлетворяющее уравнению (21). Функция ж(р;Ь, ц) Е Ст по b, \i в силу теоремы 2. При /х = 0 уравнение (20) линейное, как в лемме 2, уравнение (21) принимает вид и имеет единственное решение Ь. Далее, якобиан левой части равенства (21) по координатам Ъ{9..., Ьп вектора b при /х = 0 совпадает с детерминантом (22), значит, не равен нулю.

Тогда по теореме о неявных функциях уравнение (21) при достаточно малых имеет решение Ь = Ь(ц), стремящееся к Ь° при такое решение единственно и Ъ(ц) 6 Ст.

Тогда решение x{t\ b(fi),fi) € Ст по ц, и в силу (21) и леммы 1 имеет период р. Следствие. При условиях теоремы 3 названное периодическое решение имеет разложение по степеням ц вида (12) с функциями v-(t), имеющими период р. Доказательство. Решение ж(*,Ь(/х),/х) 6 С™ по д, поэтому имеет разложение вида (12). Следовательно, где т. В силу периодичности решения левая часть в (23) равна нулю, поэтому все Замечание.

Пусть дано уравнение с постоянными коэффициентами а,- и непрерывными функциями /, д периода р по t и д € Ст по у, /1, а корни А характеристического уравнения удовлетворяют условию (19). Тогда для отыскания решения периода р не нужно переходить от уравнения (24) к системе, можно сразу отыскать решение в виде (12), где теперь v^t) — скалярные функции с периодом р. 1 Пример 3. Найти с точностью о(ц2) периодическое решение 1 | уравнения [ Решение примера.

Здесь р = 2т, А2 + 3 = О, Л = ±iV3 Ф 2*ki/p = ki (к Е Z), условие (19) выполнено. Ищем периодическое решение в виде х = v0 + /avx + p2v2 + .... Подставляя в уравнение (25) и приравнивая коэффициенты при одинаковых степенях /*, получаем систему уравнений ,,. Надо найти решения t;0, Vj, v2 с периодом 2т. Для каждого из этих уравнений надо найти лишь частное решение (методой неопределенных коэффициентов), так как по теореме 3 при выполнении условия (19) решение с периодом р единственно.

Последовательно находим . Подставляя v0 и v{ в уравнение для v2, имеем . Отсюда находим Следовательно, Как в примере 2, вместо o(/i2) можно написать 0(/i3). К системе вида (20) сводится задача о вынужденных колебаниях автономной системы вблизи положения равновесия, вызываемых периодическим малым внешним воздействием. Рассмотрим систему Пусть х° — положение равновесия при ц = 0, то есть F(z0) = 0; fi — малое число, функция f(t) непрерывна, JP(x) € (m ^ 1) в окрестности точки ж0.

Замена х = а?0 + ру дает . Так как F(x°) = 0, то по формуле Тейлора Остаточный член г Е С (ибо другие члены в равенстве принадлежат Cm+1), г = ц2д(у, ц). Получаем систему вида (20) Если собственные значения матрицы А удовлетворяют условию (19) (нет резонанса), то по теореме 3 система (27) при достаточно малых |/*| имеет решение с периодом р. I Пример 4. Рассмотрим уравнение Решение примера. При \i = 0 положения равновесия х{ = 1 и х2 = -1.

Периодическое решение

Найдем периодическое решение, близкое к х = 1, Замена х = 1 + /ху Дает Здесь р = 2х, А = -1 ± i Ф 2*ki/p (к € Z), условие (19) выполнено. Поэтому при малых ц уравнение (29) имеет решение периода 2тг и вида у = v0($) + fivx(t) +..где все имеют период 2т. Подставляя это в (29), получаем, как в примере 3, Асимптотические методы решения дифференциальных уравнений Отсюда находим . Следовательно, Уравнение (28) при малых ц имеет и другое решение с периодом 2х.

Оно близко к неустойчивому положению равновесия х2 = -1 и отыскивается аналогичным способом. Можно доказать, что оно неустойчиво. ч Задачи для упражнений: [12], § 18, № 1079-1083. | 5« | Естественно возникает вопрос, в каких случаях разложения по степеням параметра /х, полученные в следствиях теорем 2 и 3, можно продолжить до бесконечного ряда Тейлора, сходящегося к искомому решению при малых /1.

Этот вопрос решается с помощью теоремы

Пуанкаре об аналитической зависимости решения от параметра, см. [13], гл. 1, §6, теорема 1.3 и [2], гл.6, §2, теорема 6.2.1' и §3, п. 1. I О методах исследования устойчивости периодических решений, получаемых методом малого параметра, см. [2], гл. 7, § 3 и [33], гл. 3, § 10-15. В частности, при условиях теоремы 3 асимптотическая устойчивость периодического решения при достаточно малых обеспечена, если для матрицы А все собственные значения А.

Имеют Re At. а неустойчивость — если есть хотя бы одно Re At. > 0. Поэтому в примере 4 при малых /1 решение (30) асимптотически устойчиво, а периодическое решение, близкое к х = -1 (для него А = — 1 ± л/3), — неустойчиво. Метод отыскания периодических решений при резонансе, то есть когда условие (19) не выполнено, изложен в [13), гл. 2, §8, пункты 2 и 3; примеры там же; в [2], гл. 5, §3, п. 2 и в [33], гл. 2, §6, 7. Об отыскании периодических решений автономной системы х' = Ах -f pf(x,p) в случае, когда при р = 0 периодическое решение известно, см. [13], гл.2, §8, пункт 4; [2], гл.5, §3, п. 3 и [33], гл.2, §11-13.

Метод малого параметра применялся к широкому кругу задач, в частности, в [33], главы 4-8. Методы последовательных приближений для уравнений с малым параметром разработаны в [24]. Существенно отличным от предыдущих является случай, когда малый параметр является множителем при производной, например, fix = /(*, у), у =д(х, у). Здесь нет непрерывной зависимости от /1 при р 0, и решения имеют другие свойства, см., например, [13], гл.4, §6 и [15], гл.10, §3,4. Известно много работ, в которых подробно исследуются такие случаи.