Аксонометрическое проецирование

Содержание:

  1. Виды аксонометрического проецирования
  2. Прямоугольное аксонометрическое проецирование
  3. Прямоугольная изометрия
  4. Прямоугольная диметрия
  5. Косоугольное аксонометрического проецирования
  6. Косоугольная изометрия
  7. Косоугольная диметрия
  8. Решение позиционных задач
  9. Пересечение прямой с плоскостью. пересечение двух плоскостей
  10. Пересечение тела плоскостью
  11. Пересечение двух тел
  12. Преобразование аксонометрических проекций
  13. Аксонометрические проекции
  14. Рассмотрим способ получения аксонометричес­ких проекций
  15. Изометрическая проекция отрезков и плоских фигур
  16. Изометрическая проекция окружности
  17. Изометрическая проекции геометрических тел 
  18. Диметрическая проекция
  19. Диметрическая проекция окружности
  20. Выполнение диметрических проекций деталей
  21. Фронтальная изометрическая проекция
  22. Горизонтальная изометрическая проекция
  23. Косоугольная фронтальная диметрическая проекция

Аксонометрическое проецирование - это способ аксонометрического проецирования состоит в том, что данная фигура вместе с осями прямоугольных координат, к которым она отнесена в пространстве, параллельно проецируется на некоторую плоскость, принятую за плоскость аксонометрических проекций  (эту плоскость называют также картинной плоскостью).

Виды аксонометрического проецирования

Метод ортогонального проецирования на взаимно перпендикулярные плоскости проекций П1, П2, П3 имеет существенный недостаток, состоящий в том, что представление пространственного образа предмета возможно только при условии одновременного изучения по крайней мере двух его проекций. Способ аксонометрического проецирования  устраняет обозначенный недостаток, давая возможность одновременно видеть изображение предмета с двух или трёх сторон.

Аксонометрическое проецирование (от греческого άξονας – ось и µετρο – мера) – способ изображения геометрических предметов при условии параллельного проецирования на плоскость Аксонометрическое проецирование общего положения. Эта плоскость называется картинной.

При аксонометрическом  проецировании предмет проецируется на картинную плоскость Аксонометрическое проецирование вместе с осями x, y, z ортогональной системы координат. Последние проецируются на картинную плоскость Аксонометрическое проецирование в оси аксонометрического проецирования Аксонометрическое проецирование (рис. 6.1 а).

Аксонометрическое проецирование

Аксонометрическое проецированиеСпособ аксонометрического проецирования

Единичные отрезки ОХ, ОY, OZ проецируются на Аксонометрическое проецирование в отрезки Аксонометрическое проецирование длина которых меньше единицы, поэтому аксонометрическая проекция любого объекта является искажённой по трём координатным осям. Степень уменьшения характеризуется коэффициентами искажения Аксонометрическое проецирование числовые значения которых равны длинам проекций Аксонометрическое проецирование единичных отрезков ОХ, ОY, OZ на картинную плоскость. Коэффициенты Аксонометрическое проецирование являются основными параметрами аксонометрического проецирования. Они равны косинусам углов α, β, γ наклона осей х, у, z до плоскости Аксонометрическое проецирование . Кроме того, коэффициенты искажения связаны между собой соотношением

Аксонометрическое проецирование

где φ – угол аксонометрического проецирования.

Углы Аксонометрическое проецирование наклона осей Аксонометрическое проецирование к горизонту (рис. 6.1 б) зависят от угла φ и коэффициентов Аксонометрическое проецирование (см. п. 6.2 – 6.3).

Виды аксонометрического проецирования обусловлены числовым значением угла φ проецирования и соотношениями коэффициентов искажения Аксонометрическое проецирование (рис. 6.2).

Аксонометрическое проецирование

Аксонометрическое проецированиеКлассификация аксонометрических проекций

На рис. 6.1 б показан способ построения аксонометрической проекции точки А с координатами х, у, z. Для её построения из начала отсчёта Аксонометрическое проецирование вдоль оси Аксонометрическое проецирование откладывается отрезок длиной Аксонометрическое проецирование Из полученной точки параллельно оси Аксонометрическое проецирование проводится отрезок длиной Аксонометрическое проецирование Из полученной точки проводится вертикальный отрезок длиной Аксонометрическое проецирование Полученная точка Аксонометрическое проецирование - искомая аксонометрическая проекция точки А.

Со всего множества аксонометрических проекций на практике применяются преимущественно такие:

а) прямоугольная изометрия (см. п. 6.2.1);

б) прямоугольная диметрия (см. п. 6.2.2);

в) косоугольная горизонтальная изометрия (см. п. 6.3.1);

г) косоугольная фронтальная изометрия (см. п. 6.3.1);

д) косоугольная фронтальная диметрия (см. п. 6.3.2).

Эти виды аксонометрического проецирования широко используются в машиностроении, строительстве и архитектуре.

Прямоугольное аксонометрическое проецирование

Способ аксонометрического проецирования состоит в том, что данный предмет вместе с осями прямоугольных координат, к которым эта система относится в пространстве, параллельно проецируется на некоторую плоскость α .

Прямоугольная изометрия

Для прямоугольных аксонометрических проекций (φ = 90°) из формулы (6.1) получаем основное соотношение

Аксонометрическое проецирование

Углы Аксонометрическое проецирование наклона осей Аксонометрическое проецирование к горизонту (рис. 6.1 б) определяются по таким формулам:

Аксонометрическое проецирование

Прямоугольная изометрия (от греческого ισοµετρία – соизмеримость) – вид прямоугольного аксонометрического проецирования, в котором коэффициенты искажения k по осям одинаковы.

Из формулы (6.2) для случая Аксонометрическое проецирование имеем Аксонометрическое проецирование откуда Аксонометрическое проецирование ≈ 0,816. При этом по формулам (6.3) углы Аксонометрическое проецирование (рис. 6.3).

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная изометрия

На практике с целью упрощения коэффициенты k условно считают равными единице (k = 1). Это приводит к тому, что все действительные размеры геометрических объектов увеличиваются на 23 % (1/0,816 = 1,23).

На рис. 6.4 б построена прямоугольная изометрия призмы, комплексный чертёж которой показан на рис. 6.4 а.

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная изометрия призмы

Для построения аксонометрической проекции геометрического объекта удобно ввести локальную систему координат (от англ. local – местный) – систему координат, связанную с заданным телом. Например, на рис. 6.4 а выбрана локальная ортогональная система координат x, y, z с центром О, совпадающим с геометрическим центром основы (пятиугольника) призмы.

На рис. 6.5 а – е построены точные и приближённые прямоугольные изометрические проекции окружностей горизонтального, фронтального и профильного уровней. Например, прямоугольной изометрией окружности горизонтального уровня диаметром d является эллипс с горизонтальной осью Аксонометрическое проецирование длиной 1,22d и вертикальной осьюАксонометрическое проецирование длиной 0,71d. Этот эллипс вписан в ромб с углами при вершинах 60°, 120°.

Длины всех сторон ромба равны диаметру d заданной окружности. На практике искомый эллипс заменяется овалом (рис. 6.5 г), построенным так. Строится окружность диаметром d с центром в начале отсчёта Аксонометрическое проецирование Определяются точки Аксонометрическое проецирование пересечения этой окружности с осями Аксонометрическое проецирование аксонометрической системы координат. Определяются точки Аксонометрическое проецирование пересечения окружности с осью Аксонометрическое проецирование Строятся точки Аксонометрическое проецирование пересечения отрезков Аксонометрическое проецирование с горизонтальной линией, проходящей через центр Аксонометрическое проецирование окружности. Из точек Аксонометрическое проецирование проводятся дуги Аксонометрическое проецирование радиусом Аксонометрическое проецирование Из точек Аксонометрическое проецирование проводятся дуги Аксонометрическое проецирование радиусом Аксонометрическое проецирование. Полученный овал Аксонометрическое проецированиеявляется приближённой изометрической проекцией  окружности горизонтального уровня. Длина горизонтальной оси овала меньше соответствующей оси Аксонометрическое проецирование эллипса на 6 %. Длина вертикальной оси овала больше соответствующей оси Аксонометрическое проецирование эллипса на 4 %.

На рис. 6.5 б – в, д – е приведены точные и приближённые прямоугольные изометрические проекции окружности фронтального и профильного уровней. Отличие этих проекций от проекций окружности горизонтального уровня состоит в том, что большая ось эллипса (или овала) размещена под углом 60° к горизонту.

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная изометрия окружности

Прямоугольная диметрия

Прямоугольная диметрия (от греческого δυο – два, µετρο – мера) – вид прямоугольного аксонометрического проецирования, в котором коэффициенты искажения Аксонометрическое проецирование по осям x, z одинаковы Аксонометрическое проецирование а Аксонометрическое проецирование по оси у вдвое меньше Аксонометрическое проецирование

Из формулы (6.2) для случая Аксонометрическое проецирование имеем Аксонометрическое проецирование откудаАксонометрическое проецированиеАксонометрическое проецирование При этом по формулам (6.3) углы Аксонометрическое проецирование Аксонометрическое проецирование (рис. 6.6). Эти углы удобно строить так. Из точки Аксонометрическое проецирование влево откладывается отрезок длиной 8l, где l –условная длина (произвольное значение). От полученной точки вниз откладывается отрезок длиной l. Через полученную точку и начало отсчёта Аксонометрическое проецирование проходит ось х. Для построения оси у из точки Аксонометрическое проецирование вправо откладывается отрезок длиной 8l. От полученной точки вниз откладывается отрезок длиной 7l. Через полученную точку и начало отсчёта Аксонометрическое проецирование проходит ось у (рис. 6.7).

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная димметрия

Аксонометрическое проецирование

Аксонометрическое проецированиеПостроение осей координат

На практике с целью упрощения коэффициенты k условно считают равными единице по осям х, z и 0,5 по оси у. Это приводит к тому, что все действительные размеры геометрических объектов увеличиваются на 6 % (1/0,943 = 1,06; 0,5/0,471 = 1,06).

На рис. 6.8 б построена прямоугольная диметрия пирамиды, комплексный чертёж которой показан на рис. 6.8 а.

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная диметрия пирамиды

На рис. 6.9 а – е построены приближённые прямоугольные изометрические проекции окружностей горизонтального, фронтального и профильного уровней. Например, прямоугольной изометрией окружности  горизонтального уровня диаметром d является эллипс со взаимно перпендикулярными осями Аксонометрическое проецирование длиной соответственно 1,06d, 0,35d. Этот эллипс вписан в параллелограмм со сторонами d, 0,5d, наклонёнными под углами 7°11/ , 41°25/ к горизонту. На практике искомый эллипс заменяется овалом (рис. 6.9 г), построенным  таким способом. Строится окружность диаметром d с центром в начале отсчёта Аксонометрическое проецирование Определяются точки Аксонометрическое проецирование пересечения этой  окружности с осью Аксонометрическое проецирование аксонометрической системы координат. Точки Аксонометрическое проецирование отображаются симметрично  горизонтальной оси. Определяются точки Аксонометрическое проецирование оси Аксонометрическое проецирование удалённые от точек Аксонометрическое проецирование на расстояние d. Строятся точки Аксонометрическое проецирование Аксонометрическое проецирование пересечения отрезков Аксонометрическое проецирование с горизонтальной линией, проходящей через центр Аксонометрическое проецирование окружности.

Из точек Аксонометрическое проецирование проводятся дуги Аксонометрическое проецирование радиусом Аксонометрическое проецирование Из точек Аксонометрическое проецирование проводятся дуги Аксонометрическое проецирование радиусом Аксонометрическое проецирование Полученный овал Аксонометрическое проецирование является приближённой диметрической проекцией окружности горизонтального уровня. Длина горизонтальной оси овала больше соответствующей оси Аксонометрическое проецирование эллипса на 4 %. Длина вертикальной оси овала больше соответствующей оси Аксонометрическое проецирование эллипса на 10 %. На рис. 6.9 б – в, д – е приведены прямоугольные диметрические проекции  окружности фронтального и профильного уровней. Отличие прямоугольной диметрии  окружности фронтального уровня от проекций окружностей горизонтального и профильного уровней состоит в том, что параллелограмм имеет одинаковые стороны длиной d. Большая ось овала на 1 % меньше  большей оси эллипса; меньшая ось овала больше  меньшей оси эллипса на 1 %.

Аксонометрическое проецирование

Аксонометрическое проецированиеПрямоугольная диметрия окружности

Косоугольное аксонометрического проецирования

Косоугольные аксонометрические проекции характеризуются двумя основными признаками: плоскость аксонометрических проекций располагается параллельно одной из граней предмета, которая изображается без искажения; направление проецирования выбирается косоугольное (составляет с плоскостью проекций острый угол), что дает возможность спроецировать и две другие грани или стороны предмета, но уже с искажением.

Косоугольная изометрия

Косоугольная изометрия – вид косоугольного аксонометрического проецирования, в котором коэффициенты искажения k по осям одинаковы. На практике используют коэффициенты k = 1.

Используются такие виды косоугольной изометрии:

а) горизонтальная изометрия, для которой углы Аксонометрическое проецирование = 60°; Аксонометрическое проецирование = 30°;

б) фронтальная изометрия, для которой углы Аксонометрическое проецирование = 0°, Аксонометрическое проецирование = 45°.

На рис. 6.10 а – б показана косоугольная горизонтальная изометрия точки и призмы, на рис. 6.11 а – в – окружностей горизонтального, фронтального и профильного уровней.

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная горизонтальная изометрия

Косоугольная горизонтальная изометрия окружности диаметром d горизонтального уровня является окружностью такого же диаметра (рис. 6.11 а). Косоугольные горизонтальные изометрии окружности диаметром d фронтального и профильного уровней являются эллипсами, вписанными в ромбы со сторонами d (рис. 6.11 б – в).

Аксонометрическое проецирование

Аксонометрическое проецирование Косоугольная горизонтальная изометрия окружности

На рис. 6.12 а – б показана косоугольная фронтальная изометрия точки и призмы, на рис. 6.13 а – в – окружностей горизонтального, фронтального и профильного уровней. Косоугольная фронтальная изометрия окружности диаметром d фронтального уровня является окружностью такого же диаметра (рис. 6.13 б). Косоугольные фронтальные изометрии окружностей диаметром d горизонтального и профильного уровней являются эллипсами, вписанными в ромбы, стороны которых равны d (рис. 6.13 а, в).

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная фронтальная изометрия

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная фронтальная изометрия окружности

Косоугольная диметрия

Косоугольная диметрия – вид косоугольного аксонометрического проецирования, в котором коэффициенты искажения k по осям х, z одинаковы, а по оси у – вдвое меньший (0,5k). На практике применяют фронтальную диметрию, для которой k = 1, а углы Аксонометрическое проецирование = 0°; Аксонометрическое проецирование = 45°. На рис. 6.14 а – б показана косоугольная фронтальная диметрия точки и призмы, на рис. 6.15 а – в – окружностей горизонтального, фронтального и профильного уровней.

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная диметрия

Косоугольная фронтальная диметрия окружности диаметром d фронтального уровня является окружностью такого же диаметра (рис. 6.15 б). Косоугольные фронтальные диметрии окружности диаметром d горизонтального и профильного уровней являются эллипсами, вписанными в параллелограммы со сторонами d, d/2 (рис. 6.15 а, в).

Аксонометрическое проецирование

Аксонометрическое проецированиеКосоугольная диметрия окружности

Допускается построение фронтальной диметрии с углом Аксонометрическое проецирование = 30°. На рис. 6.16 а – б показана эта разновидность косоугольной фронтальной диметрии точки и призмы, на рис. 6.17 а – в – окружностей горизонтального, фронтального и профильного уровней.

Аксонометрическое проецирование

Аксонометрическое проецированиеРазновидность косоугольной фронтальной диметрии

Аксонометрическое проецирование

Аксонометрическое проецированиеРазновидность косоугольной фронтальной диметрии окружности

Решение позиционных задач

Позиционные задачи – это задачирешение, которых должно давать ответ на вопрос о взаимном расположении геометрических объектов как по отношению друг к другу, так и относительно системы координатных плоскостей проекций.

Пересечение прямой с плоскостью. пересечение двух плоскостей

Способ аксонометрического проецирования можно применить для решения задач начертательной геометрии.

Преимущества способа аксонометрического проецирования:

а) решение позиционных задач сопровождается наглядными изображениями предметов;

б) задачи решаются с помощью только одной аксонометрической проекции.

Недостатки способа аксонометрического проецирования:

а) сложность построения аксонометрических проекций геометрических объектов;

б) сложность или невозможность решения метрических задач;

в) необходимость в некоторых случаях дополнения аксонометрического изображения другой проекцией.

Для решения задач способом аксонометрического проецирования используется, как правило, прямоугольная изометрия.

На рис. 6.18*( * в дальнейшем верхний индекс Аксонометрическое проецирование не обозначается с целью упрощения обозначений) с помощью прямоугольной изометрии решена задача на нахождение пересечения прямой l с плоскостью Σ, заданной следами Аксонометрическое проецирование Через прямую l проводится горизонтально-проецирующая плоскость  (след Аксонометрическое проецирование параллельный оси z, след Аксонометрическое проецирование совпадает с горизонтальной проекцией l1 прямой l). По вспомогательным точкам 1, 2 строится прямая k пересечения плоскостей Σ, Ω. Точка K пересечения прямых l, k - искомая точка пересечения прямой l с плоскостью Σ.  

На рис. 6.19 способом аксонометрического проецирования определяется линия пересечения плоскостей Σ, Ω, заданных следами. Определены точки 1, 2 пересечения двух пар одноимённых следов. Искомая линия k пересечения проходит через точки 1, 2. 

Аксонометрическое проецирование

Аксонометрическое проецированиеПересечение прямой с плоскостью Аксонометрическое проецированиеПересечение двух плоскостей

Пересечение тела плоскостью

На рис. 6.20 построена линия пересечения треугольной призмы плоскостью общего положения, заданной следами. Определяются точки 1 – 5 пересечения следов плоскости с рёбрами (точка 1) и гранями (точки 2 –5) призмы. Точки 4, 5 определены с помощью вспомогательных вертикальных линий, принадлежащих граням призмы.

Аксонометрическое проецирование

Аксонометрическое проецированиеПересечение многогранника плоскостью Аксонометрическое проецированиеПересечение тела вращения плоскостью

На рис. 6.21 построена линия пересечения цилиндра плоскостью общего положения. Для её определения вводятся вспомогательные секущие плоскости Аксонометрическое проецирование фронтального уровня, пересекающие цилиндр по прямоугольникам, а плоскость – по прямым линиям. Точки 1 – 5 пересечения этих прямоугольников с соответствующими прямыми - точки искомой линии пересечения цилиндра плоскостью.

Пересечение двух тел

На рис. 6.22 построена линия пересечения цилиндра с призмой. Для её определения используются секущие плоскости Аксонометрическое проецирование профильного уровня, пересекающие цилиндр и призму по прямоугольникам. Точки 1 – 6 пересечения пар прямоугольников принадлежат искомой линии пересечения данных тел.

Аксонометрическое проецирование

Аксонометрическое проецированиеПересечение тела вращения с многогранником Аксонометрическое проецированиеПересечение двух тел  вращения

На рис. 6.23 построена линия пересечения конуса с цилиндром. Для её определения применяются фронтально-проецирующие секущие плоскости Аксонометрическое проецирование проходящие через вершину S конуса. Эти плоскости пересекают конус по треугольникам, а цилиндр – по прямоугольникам. Точки 1 – 8 пересечения этих треугольников с соответствующими прямоугольниками принадлежат искомой линии пересечения конуса с цилиндром.

Преобразование аксонометрических проекций

Между аксонометрическими и ортогональными проекциями существует связь, которая позволяет переходить вот одного способа проецирования к другому и определять направление проецирования. Процедура такого перехода осуществляется с помощью построения треугольника следов картинной плоскости Аксонометрическое проецирование

На рис. 6.24 а построена система осей xАксонометрическое проецирование прямоугольной изометрии с центром в точке Аксонометрическое проецирование На оси Аксонометрическое проецирование произвольно выбирается точка Аксонометрическое проецирование , через которую проводятся отрезки Аксонометрическое проецирование первый из которых перпендикулярен  оси Аксонометрическое проецирование второй –  оси Аксонометрическое проецирование . Точки  , Аксонометрическое проецированиепринадлежат соответственно осям Аксонометрическое проецирование Полученный треугольник Аксонометрическое проецирование является треугольником следов Аксонометрическое проецирование картинной плоскости Аксонометрическое проецирование Для определения натуральной величины треугольника Аксонометрическое проецирование последний совмещается с горизонтальной плоскостью проекций П1 (см. п. 2.4.3, рис. 2.39 – 2.40). При этом точка Аксонометрическое проецирование вращается вокруг горизонтального следа Аксонометрическое проецированиедо положения О. Вдоль отрезков Аксонометрическое проецирование проводятся оси х, у горизонтальной плоскости проекций П1 с центром в точке О (угол хОу прямой). Центром вращения является точкаАксонометрическое проецирование радиусом – длина отрезка Аксонометрическое проецирование

Для определения проекции А1 произвольной точки А по аксонометрической проекции Аксонометрическое проецирование в картинной плоскости Аксонометрическое проецированиестроится луч Аксонометрическое проецирование и находится точка Аксонометрическое проецирование его пересечения с осью  вращения Аксонометрическое проецирование Проекция А1 является точкой пересечения отрезкаАксонометрическое проецирование с линией Аксонометрическое проецирование направления вращения, перпендикулярной  оси вращения Аксонометрическое проецирование

Положения плоскостей проекций П2, П3 находятся аналогично, путём вращения картинной плоскости Аксонометрическое проецированиевокруг следов Аксонометрическое проецирование соответственно (рис. 6.24 б – в).

Аксонометрическое проецирование

Аксонометрическое проецирование

Аксонометрическое проецированиеСовмещение картинной плоскости с плоскостями проекций

Аксонометрические проекции с примерами посмотроения

Аксонометрические проекции - это способ изображения геометрических предметов на чертеже при помощи параллельных проекций.

Для изображения на плоскости какого-либо предмета используют:

а) обычный рисунок;

б) способ перспективного изображения, осно­ванный на методе центрального проецирования;

в) чертеж, состоящий из прямоугольных (орто­гональных) проекций;

г) аксонометрические проекции.

Обычный рисунок изображает предмет, как он представляется глазу наблюдателя (рис. 131). Способ перспективного изображения используют при создании архитектурных проектов (рис. 132). Применение рисунка в производстве неудобно, так как он искажает форму и размеры предмета.

Аксонометрическое проецирование

Рис. 131

Аксонометрическое проецирование

Рис. 132

Чертеж дает представление о форме и размерах предмета, но часто уступает в наглядности. В этих случаях дают дополнительно изображение этого предмета в аксонометрической проекции.

На рис. 133, а приведены ортогональные проек­ции предмета, по которым довольно трудно представить его форму. Значительно нагляднее ак­сонометрическая проекция этого предмета (рис. 133, 6).

Аксонометрическое проецирование

Рис. 133

Рассмотрим способ получения аксонометричес­ких проекций

На рис. 134 изображен в трех проекциях куб. Все три видимые его грани 1, 2, 3 про­ецируются без искажения. На рис. 135, а тот же куб поставлен относительно наблюдателя под углом и изображен в перспективе. Мы видим все три грани 1. 2, 3 одновременно, но все грани и ребра изображены с искаже­нием. Однако можно спроецировать куб так, чтобы видеть в проекции три грани куба с мень­шим искажением.

Аксонометрическое проецирование

Рис. 134

Для этого куб располагаем внутри трехгранного угла, образованного плоскостями проекций Н, V и W (рис. 135, б). Куб вместе с плоскостями про­екций спроецирован на аксонометрическую плос­кость проекции РV. Поэтому оси обозначаются со штрихами, т.е. х', у', z'. Далее в обозначении штрихи убираем.

Аксонометрическое проецирование

Рис. 135

Таким образом, мы подошли к способу построе­ния аксонометрических проекций. Остается опре­делить, на какой угол целесообразнее всего повер­нуть предмет.

ГОСТ 2.317—69 устанавливает аксонометрические проекции, применяемые в чертежах всех отраслей промышленности и строительства (рис. 136).

В зависимости от направления проецирующих прямых и искажения линейных размеров предме­та аксонометрические проекции делятся на прямо­угольные и косоугольные.

Если проецирующие прямые перпендикулярны аксонометрической плоскости проекции, то такая проекция называется прямоугольной аксонометри­ческой проекцией. К прямоугольным аксономет­рическим проекциям относятся изометрическая (рис. 136. а, б) и диметрическая (рис. 136, в, г) проекции.

Если проецирующие прямые направлены не под углом 900 к аксонометрической плоскости проек­ций, то получается косоугольная аксонометрическая проекция. К косоугольным аксонометричес­ким проекциям относятся фронтальная изометри­ческая (рис. 136, д, е), горизонтальная изометри­ческая (рис. 136, ж, з) и фронтальная диметрическая (рис. 136, и, к) проекции.

Прямоугольные аксонометрические проекции дают наиболее наглядные изображения и поэтому чаще применяются в машиностроительном черче­нии.

Виды аксонометрических проекций, расположение аксонометрических осей и коэффициенты искажения линейных размеров показаны на рис. 136.

Аксонометрическое проецирование

Рис. 136

Изометрическая проекция отрезков и плоских фигур

На рис. 136, а и б представлена изометрическая проекция.

Рассмотрим построение изометрической проекции куба.

Как и при ортогональном (прямоугольном) проецировании, куб расположен внутри трехгран­ного угла, образованного плоскостями проекций Н, V и W. В прямоугольной изометрической про­екции оси х, у, z расположатся под углом 1200 друг к другу. Все три коэффициента искажения по аксонометрическим осям одинаковы и равны 0,82, поэтому длина ребер куба на изображении одинаковая и равна 0,82 действительной длины. Обычно для упрощения построений такого сокра­щения не делают; отрезки, параллельные аксоно­метрическим осям, откладывают действительной длины.

Простейшим элементом является точка, поэто­му построение изометрических проекций начнем с точки.

Если даны ортогональные проекции точек А и В (рис. 137, а), то известны их координаты. Для построения изометрической проекции этих точек проводят аксонометрические оси х, у и z под углом 1200 друг к другу (рис. 137, б). Далее от начала координат О по оси х откладывают отре­зок, равный координате хB точки В, в данном примере хB = 39 мм. Получим точку 1.

Из точки 1 проводят прямую, параллельную оси у, и на ней откладывают отрезок, равный координате yB, точку 2. Из точки 2 проводят пря­мую, параллельную оси z, на которой отклады­вают отрезок, равный координате zB. Полученная точка В — искомая изометрическая проекция точ­ки В.

Аналогично строят изометрическую проекцию точки А. Так как координата z точки А равна нулю, то достаточно отложить координаты х и у (по соответствующим осям) точки А.

Аксонометрические оси изометрической проек­ции, а также отрезки прямых, параллельные этим осям, удобно строить с помощью угольника с уг­лами 30 и 600 (рис. 137, а).

Аксонометрическое проецирование

Рис. 137

Изометрическая проекция отрезка прямой АВ может быть легко построена по двум точкам — концам этого отрезка. Найдя по координатам изометрические проекции этих точек, соединим их прямой линией. По точкам может быть выпо­лнена изометрическая проекция любой фигуры. При этом расположение фигур относительно оси х, у и z может быть различным.

Рассмотрим, например, построение изометри­ческой проекции правильных пятиугольников (рис. 138). В этом случае для упрощения построе­ний рассматриваются пятиугольники, расположен­ные на плоскостях проекций Н, V, W. Тогда одна из координат вершин пятиугольника будет равна нулю и изометрическую проекцию каждой верши­ны можно строить по двум координатам, подобно построению точки А ( см. рис. 137, б).

Построив изометрические проекции вершин, соединяем их прямыми и получаем изометричес­кую проекцию прямоугольника.

Аксонометрическое проецирование

Рис. 138

Изометрическая проекция окружности

На рис. 139 изображена изометрическая проек­ция куба с окружностями, вписанными в его гра­ни. Квадратные грани куба будут изображаться в виде ромбов, а окружности в виде эллипсов. Надо запомнить, что малая ось CD каждого эллипса всегда должна быть перпендикулярна большой оси АВ.

Если окружность расположена в плоскости, параллельной плоскости Н, то большая ось АВ должна быть перпендикулярна оси z, а малая ось CD— параллельна оси z (рис. 139).

Если окружность расположена в плоскости, параллельной плоскости V, то большая ось эллип­са должна быть проведена под углом 900 к оси у.

При расположении окружности в плоскости, параллельной плоскости W, большая ось эллипса располагается под углом 900 к оси х.

Заметим, что большие оси всех трех эллипсов направлены по большим диагоналям ромбов.

При построении изометрической проекции ок­ружности без сокращения по осям х, у и z длина большой оси эллипсов берется равной 1,22 диа­метра d изображаемой окружности, а длина малой оси эллипса — 0,71 d (рис. 139).

Аксонометрическое проецирование

Рис. 139

В учебных чертежах вместо эллипсов рекомен­дуется применять овалы, очерченные дугами ок­ружностей. Упрощенный способ построения ова­лов приведен на рис. 140.

Для построения овала соответствующей изометрической проекции окружности, параллельной плоскости Н, проводят вертикальную и горизон­тальную оси овала (рис. 140, а). Из точки пересе­чения осей О проводят вспомогательную окруж­ность диаметром d, равным действительной вели­чине диаметра изображаемой окружности, и нахо­дят точки n1, n2. n3, n4 пересечения этой окруж­ности с аксонометрическими осями х и у. Из то­чек m1 и m2 пересечения вспомогательной окруж­ности с осью z, как из центров радиусом R = m1* n3, проводят две дуги 23 и 14, принадлежащие овалу. Пересечения этих дуг с осью z дают точки С и D.

Из центра О радиусом ОС, равным половине малой оси овала, засекают на большой оси овала АВ точки О1 и О2. Точки 1, 2, 3 и 4 сопряжений дуг радиусов R и R1 находят, соединяя точки mt и т2 с точками O1 и О2 и продолжая прямые до пересечения с дугами 23 и 14. Из точек O1 и О2 радиусом R1=0,1 проводят две дуги.

Так же строят овалы. расположенные в плос­костях, параллельных плоскостям V и W (рис. 140, б и в).

Аксонометрическое проецирование

Рис. 140

Изометрическая проекции геометрических тел 

Изображение геометрического тела в изометри­ческой проекции, например правильной шести­угольной призмы, выполняют и такой последова­тельности (рис. 141).

Если основные призмы — правильный много­угольник (например, шестиугольник), то построе­ние вершин основания по координатам можно упростить, проведя одну из осей координат через центр основания. На рис. 141 оси х, у и z проведе­ны через центры правильных шестиугольников призмы.

Построив изометрическую проекцию основания призмы, из вершин шестиугольника основания проводим прямые, параллельные соответственно осям х, у или z (для каждой из рассматриваемых на рис. 141 призм). На этих прямых от вершин основания отложим высоту призмы и получим точки 1, 2, 3, 4, 5, 6 вершин другого основания призмы. Соединив эти точки прямыми, получим изометрическую проекцию призмы. В заключение устанавливаем видимые и невидимые линии; не­видимые линии надо проводить штриховыми ли­ниями.

Аксонометрическое проецирование

Рис. 141

На рис. 142 показано построение изометричес­кой проекции плоской детали криволинейного очертания по комплексному чертежу. Деталь (рис. 142, а и б) расположена параллельно фронтальной плоскости проекций. На фронтальной проекции комплексного чертежа намечают ряд точек и строят их на изометрической проекции (рис. 142, в).

Через построенные точки контура кулачка про­водят по лекалу кривую линию.

Параллельно оси у от найденных точек проводят прямые линии, на которых отклады­вают отрезки, равные А (толщине детали). Соединяя новые точки, получают контур дру­гой плоскости детали, который также обводят по лекалу.

Аксонометрическое проецирование

Рис. 142

Аналогично строят по чертежу изометрическую проекцию кулачка.

На рис. 143 показано построение изометричес­кой проекции (рис. 143, в) неправильной пятиу­гольной пирамиды по ее комплексному чертежу (рис. 143, а). Определяем координаты всех точек основания пирамиды, затем по координатам x и y строим изометрическую проекцию пяти точек — вершин основания пирамиды А, В, С. D, Е. Например, изометрическая проекция точки А получается следующим образом.

По оси х от намеченной точки О откладываем координату хА - a'd. Из конца ее провопим пря­мую, параллельную оси у, на которой откладыва­ем вторую координату этой точки уА = a'd.

Далее строят по координатам высоту пирамиды и получают точку S — вершину пирамиды. Соеди­няя точку S с точками А. В. С, D н Е, получают изометрическую проекцию пирамиды.

Аксонометрическое проецирование

Рис. 143

Последовательность построения изометрической проекции детали по данному комплексному черте­жу (рис. 144, а) показана на рис. 144, (6 — г). Деталь мысленно разделяют на отдельные простей­шие геометрические элементы, в данном случае на призматические элементы (рис. 144, б). Нахо­дят центры окружностей (рис. 144, в). Затем уда­ляют лишние построения, контур изображения обводят сплошной основной линией (рис. 144, г).

Аксонометрическое проецирование

Рис. 144

Для выявления внутренней формы предмета применяют вырез одной четверти детали. Вырез в аксонометрических проекциях можно строить двумя способами.

Первый способ. Вначале строят в тонких линиях аксонометрическую проекцию (рис. 145, а). Затем выполняют вырез, направляя две секущие плоскости по осям х и у (рис. 145, б). Удаляют часть изображаемого предмета (рис. 145, в), после чего штрихуют сечения и обводят изображение сплошными толстыми лини­ями (рис. 145, г).

Аксонометрическое проецирование

Рис. 145

Второй способ построения разреза при изображении деталей и аксонометрической проекции показан на рис. 146, а. Сначала строят аксонометрические проекции фигур сечения, а затем дочерчивают части изобра­жения предмета, расположенные за секущими плоскостями (рис. 146. б).

Второй способ упрощает построение, освобожда­ет чертеж от лишних линий.

Аксонометрическое проецирование

Рис. 146

Линии штриховки сечений в аксонометрических проекциях наносят, как показано на рис. 147, а, параллельно диагоналям проекции квадратов, которые лежат в плоскостях проекций и стороны которых параллельны аксонометрическим осям.

Штриховку сечений к изометрической проекции удобно выполнять угольником с углами 30 и 600 (рис. 147, б).

Аксонометрическое проецирование

Рис. 147

Изометрическая проекция шара (рис. 148) вы­полняется следующим образом. Из намеченного центра О проводят окружность диаметра, равною 1,22d (d — диаметр шара); это и будет изображе­ние шара в изометрической проекции.

Если требуется построить половину, четверть или три четверти шара, то необходимо сначала вычертить овалы (рис. 148), большие оси которых АВ и CD перпендикулярны осям z и у. Тогда овалы и точки т и п пересечения этих овалов опре­делят границы трех четвертей шара.

Аксонометрическое проецирование

Рис. 148

Диметрическая проекция

В диметрической проекции ось z — вертикаль­ная; ось х расположена под утлом 7010', а ось у — под утлом 41025' к горизонтальной прямой (см. рис. 136, в и г).

Коэффициенты искажения по осям х и z равны 0.94. а по оси у — 0,47, но обычно отрезки пря­мых по осям х и у откладывают без искажения, а по оси у коэффициент искажения берут 0,5.

Все отрезки прямых линий предмета, которые были параллельны осям х, у и z на комплексном чертеже, останутся параллельными соответствую­щим осям в диметрической проекции.

Положение плоскости фигуры относительно осей диметрической проекции может быть различ­ным. На рис. 149 показано, как изменяется изо­бражение фигуры и диметрии

 в зависимости от того, на какой из плоскостей проекций расположена фигура. Это изменение вызывается тем об­стоятельством, что при построении вершин много­угольника их координаты по оси у в диметрической проекции сокращаются вдвое против действительной величины. Например, высота h фигуры, расположенной в плоскости H. и длина l фигуры, расположенной в плоскости W, уменьшаются в два раза.

Аксонометрическое проецирование

Рис. 149

В диметрической проекции изображения гео­метрических тел строят так же, как в изометри­ческой. с учетом коэффициента искажения по оси у.

На рис. 150 показано изображение треугольной призмы в диметрической проекции. Если ребра призмы параллельны оси х или z, то размер их высоты нс меняется, но искажается форма основа­ния. При расположении ребер параллельно оси у сокращается вдвое их высота.

Аксонометрическое проецирование

Рис. 150

Диметрическая проекция окружности

Окружности в диметрической проекции изобра­жаются в виде эллипсов. Большая ось АВ эллип­сов во всех случаях равна 1,06 d, где d — диаметр окружности. Малые оси CD эллипсов, располо­женных на плоскостях, параллельных плоскости проекций W и H, равны 0,35 d, а на плоскости, параллельной плоскости V, — O.95 d (рис. 151 ).

Аксонометрическое проецирование

Рис. 151

В диметрической проекции окружности эллип­сы иногда заменяются овалами. На рис. 152 при­ведены примеры построения диметричеcких про­екций окружностей, где эллипсы заменены овала­ми, построенными упрошенным способом.

Разберем упрощенное построение диметрической проекции окружности, расположенной параллельно фронтальной плоскости проекций (рис. 152, а).

Через точку О проводим оси, параллельные осям х и z. Из центра О радиусом, равным радиу­су данной окружности, проводим вспомогательную окружность, которая пересекается с осями х и z в точках 1, 2, 3, 4.

Из точек 1 и 3 (по направлению стрелок) про­водим горизонтальные линии до пересечения с осями АВ и CD овала и получаем точки О1  О2О3 и О4. Приняв за центры точки О1 и О4 радиу­сом R = О41, проводим дуги 12 и 34. Приняв за центры точки О2 и О3, проводим радиусом R1= 022 замыкающие овал дуги 23 и 14. Большая ось АВ овала примерно будет равняться 1.06d, а малая CD— 0,95d.

Построение диметрической проекции окружнос­ти, лежащей в плоскости, параллельной профиль­ной плоскости проекции W, приведено на рис. 152, б.

Из центра О проводим прямые, параллельные осям х и z, а также большую ось овала AB пер­пендикулярно малой оси CD. CD параллельна оси х. Из точки О радиусом, равным радиусу данной окружности, проводим вспомогательную окруж­ность и получаем точки п и п1.

На прямой, параллельной оси х, вправо и влево от центра О откладываем отрезки, равные диамет­ру вспомогательной окружности, и получаем точ­ки О1 и О2. Приняв эти точки за центры, прово­дим (по направлению стрелок) радиусом R = Otn = О2n1 дуги овалов. Пересечения получен­ных дуг с вспомогательной окружностью дают точки n2 и n3. Соединяя точки О2 и n1, О2 и n2 прямыми на линии большой оси АВ овала, полу­чим точки О3 и О4. Приняв их за центры, проводим радиусом R, замыкающие овал дуги.

На рис. 152, в показано аналогичное упрошен­ное построение диметрнческой проекции окруж­ности, расположенной в плоскости, параллельной горизонтальной плоскости проекций.

Аксонометрическое проецирование

Рис. 152

Выполнение диметрических проекций деталей

Последовательность выполнения детали в диметрической проекции показана на рис. 153.

Деталь мысленно разделяют на отдельные про­стейшие геометрические элементы, в данном при­мере — на прямоугольные параллелепипеды (рис. 153, а). По оси у откладывают половину соответствующей длины ребра.

Далее находят положения центров отверстий в детали, используя метод координат, и строят ова­лы. Разрез детали выполняют по двум плос­костям. параллельным плоскостям V и W. На таком разрезе видно, что отверстия с верти­кальными и горизонтальными осями — цилиндрические сквозные. Затем удаляют линии по­строения, контур изображения обводят сплош­ной основной линией (рис. 153, б) и штрихуют сечения (рис. 153, в).

Аксонометрическое проецирование

Рис. 153

Фронтальная изометрическая проекция

Положение аксонометрических осей при изо­бражении предметов в фронтальной изометричес­кой проекции показано на рис. 136, д и е.

Фронтальную изометрическую проекцию выполняют без искажения по осям х, у и z. Все изобра­жения, лежащие в плоскостях, параллельных фронтальной плоскости проекций, изображаются без искажения (рис. 136, д, е и рис. 154, а).

Окружности, расположенные в плоскостях, параллельных фронтальной плоскости проекций, проецируются на аксонометрическую плоскость проекции в окружности без искажения по осям.

Окружности, лежащие в плоскостях, парал­лельных плоскостям проекций Н и W, проециру­ются в эллипсы.

Для построения эллипсов из центров О радиу­сом, равным радиусу данной окружности, прово­дим вспомогательные окружности. Через центры О проводят прямые под утлом 22030' к аксономет­рическим осям х и z и от центра откладывают большие оси эллипсов. Малые оси эллипсов до­лжны быть перпендикулярны большим.

Длина большой оси эллипса равна 1,3d, а ма­лой — 0.54d, где d ~ диаметр окружности.

Предмет во фронтальной изометрической про­екции следует располагать относительно осей так, чтобы окружности дуги плоских кривых находи­лись в плоскостях, параллельных фронтальной плоскости проекций (рис. 154, б). Тогда построе­ние их упрощается, так как они изображаются без искажений.

Аксонометрическое проецирование

Рис. 154

Горизонтальная изометрическая проекция

Положения аксонометрических осей горизон­тальной изометрической проекции показаны на рис. 136, ж и з.

В горизонтальной изометрической проекции линейные размеры предметов изображаются без искажения по всем трем осям. При построении осей пользуются угольниками с углами 30 и 600, как показано на рис. 155, а.

Окружность, расположенная в плоскости, па­раллельной плоскости Н, проецируется в окруж­ность того же диаметра (рис. 155, б, окружность 2). Окружности, лежащие в плоскостях, парал­лельных плоскостям проекций V и W,— в эллип­сы (рис. 155, б, эллипсы 1 и 3).

Большая ось эллипса 1 равна 1.37d, а малая — 0,37d (d — диаметр изображаемой окружности). Большая ось эллипса 3 равна 1,22d, а малая — 0,71d.

На рис. 155, в изображена деталь в горизон­тальной изометрической проекции.

Аксонометрическое проецирование

Рис. 155

Косоугольная фронтальная диметрическая проекция

Положения аксонометрических осей фронталь­ной диметрической проекции показаны на рис. 136, и и к. Допускается применять фронталь­ные диметрические проекции с углом наклона оси у 30 и 600. Длина отрезков прямых, отложенных в направлении осей х и z, выполняется без иска­жения, а в направлении оси у линейные размеры сокращают вдвое (см. рис. 136, и и к). Эго можно видеть и на рис. 156, а—в, где даны фронтальные проекции призм и пирамиды. На рис. 156, а осно­вание призмы (правильный шестиугольник) иска­жено, а на рис. 156, в — без искажения.

Окружность, лежащая в плоскости, параллель­ной фронтальной плоскости проекций (см. рис. 136, и и к), проецируется на аксонометричес­кую плоскость проекций в окружность того же диаметра, а окружности, лежащие в плоскостях, параллельных профильной и горизонтальной плос­костям проекций, — в эллипсы. Большая ось эл­липсов равна l,07d, а малая ось — 0,33d (d диаметр окружности). Для упрощения построения эллипсы заменяют овалами.

Аксонометрическое проецирование

Рис. 156

Линии штриховки сечений в аксонометрических проекциях наносят параллельно одной из диагона­лей проекций квадратов, лежащих в соответствующих координатных плоскостях, стороны кото­рых параллельны аксонометрическим осям (рис. 157, а). При нанесении размеров выносные линии проводят параллельно аксонометрическим осям, размерные линии — параллельно измеряе­мому отрезку (рис. 157, б).

Аксонометрическое проецирование

Рис. 157

В аксонометрических проекциях спицы махови­ков и шкивов, ребра жесткости и подобные эле­менты штрихуют (рис. 158. а).

При выполнении в аксонометрических проекци­ях зубчатых колес, реек, червяков, резьб и подо­бных элементов допускается применять условнос­ти по ГОСТ 2.402-68 и ГОСТ 2.311-68 (рис. 158, б и в).

Аксонометрическое проецирование

Рис. 158

Примеры и образцы решения задач:

Услуги по выполнению чертежей:

  1. Заказать чертежи
  2. Помощь с чертежами
  3. Заказать чертеж в компасе
  4. Заказать чертеж в автокаде
  5. Заказать чертежи по инженерной графике
  6. Заказать чертежи по начертательной геометрии
  7. Заказать черчение

Учебные лекции:

  1. Инженерная графика
  2. Начертательная геометрия
  3. Оформление чертежей
  4. Чертеж общего вида и сборочный чертеж
  5. Техническое рисование
  6. Машиностроительные чертежи
  7. Геометрические построения
  8. Деление окружности на равные части
  9. Сопряжение линий
  10. Коробовые кривые линии
  11. Построение уклона и конусности
  12. Лекальные кривые
  13. Параллельность и перпендикулярность
  14. Методы преобразования ортогональных проекций
  15. Поверхности
  16. Способы проецирования
  17. Метрические задачи
  18. Способы преобразования чертежа
  19. Кривые линии
  20. Кривые поверхности
  21. Трёхгранник Френе
  22. Проецирование многогранников
  23. Проецирование тел вращения
  24. Развёртывание поверхностей
  25. Проекционное черчение
  26. Проецирование
  27. Проецирование точки
  28. Проецирование отрезка прямой линии
  29. Проецирование плоских фигур
  30. Способы преобразования проекций
  31. Проекции геометрических тел
  32. Сечение геометрических тел плоскостями и развертки их поверхностей
  33. Взаимное пересечение поверхностей тел
  34. Сечение полых моделей
  35. Разрезы
  36. Требования к чертежам деталей
  37. Допуски и посадки
  38. Шероховатость поверхностей и обозначение покрытий
  39. Разъемные и неразъемные соединения деталей
  40. Передачи и их элементы