Расчёт стержневых систем

Расчёт стержневых систем



Стержневые системы 1.1. Общие понятия 1.2. Расчет статически определимых рам 1.3. Расчет статически неопределимых стержневых систем методом сил 1.4. Особенности расчета методом сил многопролетных неразрезных балок 1.5. Использование свойств симметрии при раскрытии статической неопределимости стержневых систем 1.6. Расчет методом сил статически неопределимых систем, работающих на растяжение или сжатие 1.7. Расчет статически неопределимых стержневых систем методом сил в матричной форме Библиографический список 4 1. Расчет стержневых систем. 1.1. Общие понятия Для того чтобы стержневые системы (балки, рамы и т. п.) могли служить сооружениями и выдерживать внешние нагрузки, необходимо наложить на них определенные связи, которые делят на связи внешние и внутренние. Под связью обычно понимают тела (препятствия), ограничивающие перемещение другим телам, точкам или сечениям конструкции. На практике такие тела называют опорными устройствами, фундаментами и т. п. В инженерных расчетах вводится понятие идеальных связей. Если, например, на левый торец бруса (рис. 1.1, а) наложено условие, запрещающее вертикальное перемещение, то говорят, что в этой точке имеется одна внешняя связь. Условно она изображается в виде стержня с двумя шарнирами. Если запрещено вертикальное и горизонтальное смещения, то на систему наложены две внешние связи (рис. 1.1, б). Заделка в плоской системе дает три внешние связи (рис 1.1, в), препятствующие вертикальному, горизонтальному смещениям и повороту сечения заделки. лд Рис. 1.1 Для того чтобы закрепить тело (стержень) на плоскости и обеспечить ему геометрическую неизменяемость, необходимо и достаточно наложить на него три связи (рис. 1.2), причем все три связи не должны быть взаимно параллельными и не должны пересекаться в одной точке. В дальнейшем связи, обеспечивающие геометрическую неизменяемость системы и ее статическую определимость, будем понимать как необходимые связи. Геометрически неизменяемой системой называют такую систему, которая может изменять свою форму только за счет деформации ее элементов (рис. 1.2), в то время как геометрически изменяемая система может допускать перемещения и при отсутствии деформации (рис. 1.3). Такая система является механизмом (рис. 1.3, а). 5 Рис. 1.2 Наряду с отмеченными различают еще мгновенно изменяемые системы, под которыми понимают системы, допускающие бесконечно малые перемещения без деформации ее элементов (рис. 1.4). Рис. 1.3 Так, например, под действием силы P, приложенной в шарнире Д (рис. 1.4, а), стержни ДВ и ДС без деформации повернутся относительно шарниров В и С на бесконечно малый угол d . Тогда из условия равновесия, вырезанного при малом значении величины силы P усилия в стержнях ДВ и ДС будут стремиться к бесконечности, вызывая осевую деформацию стержней и изменяя положение системы. 6 Рис. 1.4 Для рамы на рис. 1.4, б при рассмотрении уравнения статики момент силы P не уравновешивается (реакция R1 ,не может вызывать момента относительно рассматриваемой точки, так как линия ее действия проходит через эту точку). Аналогичная особенность проявляется и для системы, показанной на рис. 1.4, в. Момент силы P относительно точки k не уравновешивается. Таким образом, эти системы также допускают бесконечно малые перемещения (относительно моментной точки) без деформации их элементов. В сооружениях и конструкциях такие системы недопустимы. Если геометрически неизменяемая система имеет помимо необходимых еще и дополнительные связи, то независимых уравнений статики оказывается недостаточно для определения неизвестных усилий (реакций связей) и такая система называется статически неопределимой. Разница между числом неизвестных усилий, подлежащих определению, и числом независимых уравнений статики характеризует степень статической неопределимости, которую принято обозначать символом n . Так, балка и рама, представленные на рис. 1.5, являются два раза (дважды) статически неопределимыми. В этих схемах число неизвестных реакций равно пяти, а число независимых уравнений статики, которые можно составить для каждой из них, равно трем. Всякий замкнутый контур представляет собой систему трижды статически неопределимую (рис. 1.6). Рис. 1.6 Постановка одиночного шарнира снижает степень статической неопределимости системы на единицу (рис. 1.7, а), поскольку изгибающий момент в шарнире отсутствует. Под одиночным шарниром понимают шарнир, соединяющий концы двух стержней. Рис. 1.7 Шарнир, включенный в узел, где сходятся концы нескольких стержней, понижает степень статической неопределимости системы на число одиночных шарниров, определяемых по формуле О=С–1. Здесь под C понимают число стержней, сходящихся в узле. Например, в раме (рис. 1.7, б) число одиночных шарниров О=С–1=3-1=2, поэтому степень статической неопределимости понижается на две единицы и становится равной n4 . 1.2. Расчёт статически определимых рам. 8 Основные понятия Рамой называют стержневую систему, у которой все или некоторые узловые соединения являются жёсткими (рис. 1.8 а). Жёсткий узел характеризуется тем, что угол между осями стержней, которые его образуют, не изменяется при действии нагрузки (рис. 1.8 а). Угол между касательными к упругим линиям ригеля и наклонной стойки в узле В сохраняет неизменную величину α, а угол между касательными к упругим линиям того же ригеля и правой стойки в узле D сохраняет неизменную величину β. Рамы могут быть плоскими, когда все оси стержней лежат в одной плоскости (рис 1.8 а, б, в) и пространственными (рис. 1.8 г). Горизонтальный стержень рамы называют ригелем, а стержни, его поддерживающие, называют стойка. Левая стойка наклонная, а правая вертикальная. Рамы могут быть простыми, состоящими из трёх стержней (рис 1.8), сложными, многопролётными (рис 1.8 б) и многоярусными (рис 1.8 в). Также они подразделяются на статически определимые (рис 1.8 б), когда число неизвестных реакций, усилий меньше или равно числу независимых уравнений статики, которые могут быть составлены для данной рамы, и статически неопределимые, если это условие не выполняется (рис 1.8 а, в, г), об этом будет сказано далее. В отличии от балок, в сечениях рам, наряду с изгибающими моментами, поперечной силой, возникает еще и продольная сила. Рис. 1.8 Определение усилий (М, Q, N) выполняются также, как и в балках посредством метода сечений (РОЗУ). При этом правило знаков для изгибающего момента М и поперечной силы Q такое же, как для балок, а для продольной силы N, как в 9 стержнях при растяжении – сжатии. Определение нормальных n и касательных напряжений  производится по тем же зависимостям, как в балках, если стержень испытывает изгиб. В случае сложного сопротивления, когда наряду с изгибающим моментом возникает в стержне еще и продольная сила, то расчет ведется как и при изгибе с растяжением – сжатием, излагаемым в разделе "Сложное сопртивление”. Пример 1.1 Для заданной рамы (рис.1.9) построить эпюры внутренних усилий и найти величину и направление полного перемещения сечения К, если Р = 5кН; q = 10 кН/м; EIz = const; сечения стоек и ригеля одинаковые I = 8000 см4: 1. Находим реакции опор: а) вертикальные реакции V1,V2: б) горизонтальные реакции Н1 и Н2: 2. Строим эпюры внутренних усилий М, Q, N. а. Построение эпюры изгибающих моментов М. Выбираем точку наблюдения, считая, что она находится внутри контура. В этом случае поля расположены выше участков 1-3, 3-4, 4-К, 4-2, рассматриваются как внешние, а внутри контура – внутренние. При определении изгибающих моментов придерживаемся так же правил, что и в балках. Вычисляем моменты в характерных сечениях каждого из участков рамы. Участок 1-3. Момент на конце со стороны опоры – 1, М13 = 0. Момент в узле 3, Знак минус потому, что на участке 1-3 нижняя отсеченная часть изгибается выпуклостью вверх по отношению к наблюдателю. Участок 3-4 (ригель). Момент в начале участка (в сечении узла 3) М34 , такой же, как и на стойке 1– Момент В шарнире момент равен нулю. Участок 2-4 (наклонная стойка) Участок 4-К В начале участка момент МК4 = 0. В конце участка Эпюра изгибающих моментов показана на (рис. 1.10, а ) 11 Рис. 1.10 Выполняем проверку правильности построения эпюры М. Если эпюра М построена верно, то любой внеопорный узел или любая часть рамы под действием внешних и внутренних сил должна находиться в равновесии. Вырежем из рамы сечениями бесконечно близкими к узлу, например, узел (4) и рассмотрим его равновесие. Значения моментов берем в соответствующих сечениях из эпюры М (рис. 1.10, б). Уравнения моментов узла (4) имеет вид Условие выполняется, значит в примыкающих к узлу (4) сечениях моменты определены верно. Аналогично выполняется проверка в узле (3) и т. д. Примечание Если в узле приложены сосредоточенные внешние усилия (момент или силы) то они должны быть учтены при проверке. Распределенная нагрузка не показывается, т. к. dx – малая величина. б. Построение эпюры поперечных сил Q. Придерживаемся того же правила знака, как для балок: если равнодействующая внешних сил слева от сечения направлена вверх, а справа вниз поперечная сила Q > 0, если наоборот – т Участок 1–3. При рассмотрении левой отсеченной части  10 кН.(минус потому, что левая отсеченная часть находится под воздействием силы Н1 12 направленной вниз, если смотреть на отсеченную часть из точки наблюдателя). Поперечная сила постоянна по длине этого участка (рис. 1.11, а) Рис. 1.11 Участок 3-4 Поперечная сила в любом сечении, взятом на расстоянии х от узла (3) при рассмотрении сил действующих от сечения слева, равна 103 01QV xqx. При х = 0, получим поперечную силу в сечении левее узла (3), т. е. Q34  30кН; при х = 3 м, получаем поперечную силу Q, т. е. в сечении левее узла (4). Поперечная сила на участке 3–4 изменяется по линейному закону (рис.1.11, а). Участок 4–К . В сечении на расстоянии х от правого конца участка (рис. 1.11, а) поперечная сила равна (линейный закон). При х = 0, получаем , а при х = 3 м, получаем Участок 2–4. Поперечную силу в сечении этого участка получим, проектируя внешние силы Н2, V2, приложенные в точке 2 (рис. 1.11,а) на ось У, перпендикулярную продольной оси стержня. По длине участка 3–4 поперечная сила постоянная. Эпюра поперечных сил изображена на (рис. 1.11, а). в. Построение эпюры продольных сил N. Вычисляем продольную силу в сечении каждого участка. Участок 1–3. Рассматриваем нижнюю часть (рис. 1.12) Минус взят потому, что продольная сила, уравновешивающая реакцию V1, направлена к сечению, т. е. навстречу реакции V1, значит отсеченный участок испытывает сжатие. Если бы продольная сила была направлена от сечения, то знак N – положителен. Участок 3-4 (на ригеле). Продольная сила N30 кН, отрицательна, так как сжимающая. В сечении х (рис.1.12, б) на участке 4-К: перпендикулярны продольной оси участка. Участок 2–4. Рис. 1.12 На наклонной стойке в сечении х продольную силу находим, проектируя внешние силы V2 и Н2 на ось Х, совпадающею с осью стержня (рис. 1.12): 34 5 4 (сжатие), Поэтому присваиваем знак минус N24  кН. 14 Эпюра продольных сил изображена на (рис. 1.11, б). 3. Определяем перемещения сечения К. Для этого используем интеграл Мора, формулы А.К. Верещагина, Симпсона, (см. раздел "Прямой изгиб”). Определяем вертикальное перемещение сечения К. Для этого освобождаем раму от всех внешних нагрузок (q, Р) и прикладываем в этом сечении единичную безразмерную силу (рис.1.13, а). Направление силы принимаем сами, например, в низ. Рис. 1.13 На рис. 1.13, а представлена эпюра изгибающих моментов М1 от этой силы. Производим перемножение эпюр М и М1 по способу Верещагина, находим вертикальное перемещение сечения К. На участке 4-К использовалась формула Симпсона, а на участке 2-4 формула Верещагина.  Определяем горизонтальное перемещение сечения К. Для этого раму освобождаем от внешних нагрузок, загружаем единичной безразмерной силой, приложенной горизонтально (рис.1.13, б). Эпюра от этой силы показана на рис. 1.13, б. Вычисляем горизонтальное перемещение, используя формулы Верещагина и Симпсона. Знак минус указывает, что действительное горизонтальное перемещение направлено в противоположенную сторону приложения единичной силы, т. е. влево. 15 Находим полное перемещение сечения К как геометрическую сумму найденных перемещений. Направление полного перемещения определяется углом  (рис 1.14, б). Определяем угол поворота сечения К. Прикладываем в сечении К единичный безразмерный момент (рис.1.14, а) и строим от него эпюру изгибающих моментов. Рис. 1.14 Производим перемножение эпюр М и М3, используя формулу Верещагина, находим угол поворота сечения К: 16 1.3. Расчет статически неопределимых стержневых систем методом сил Наиболее широко применяемым методом раскрытия статической неопределимости стержневых систем является метод сил. Он заключается в том, что заданная статически неопределимая система освобождается от дополнительных (лишних) связей как внешних, так и внутренних, а их действие заменяется силами и моментами. Величина их в дальнейшем определяется так, чтобы перемещения соответствовали тем ограничениям, которые накладываются на систему отброшенными связями. Таким образом при указанном способе решения неизвестными оказываются силы или моменты, действующие в местах отброшенных или рассеченных связей. Отсюда и название «метод сил». Сущность метода сил рассмотрим на примере расчета статически неопределимой рамы, изображенной на рис. 1.15. Считаем, что внешняя нагрузка, размеры и жесткости стержней известны. Порядок расчета 2.1. Устанавливаем степень статической неопределимости, для чего используем выражение , где X – число неизвестных (имеется 5 внешних связей); Y – число независимых уравнений статики, которые можно составить для рассматриваемой системы. Для заданной рамы число неизвестных реакций равно пяти, а число независимых уравнений трем, так как система сил плоская и произвольно расположенная, поэтому  Система два раза статически неопределима. 2.2. Преобразуем заданную систему в статически определимую, геометрически неизменяемую и эквивалентную заданной системе, т. е. образуем основную систему. Для этого удаляем лишние связи путем их отбрасывания или перерезания. На рис. 1.15 изображена основная система, полученная путем отбрасывания лишних опорных связей, а на рис. 1.16 основные системы образованы путем отбрасывания и перерезания связей. Например, (рис. 1.16, а) в опоре А отброшена горизонтальная связь и в опоре С перерезана связь, препятствующая повороту сечения. Таким образом, для каждой статически неопределимой стержневой системы можно Рис. 1.15 17 подобрать несколько вариантов основных систем (рис. 1.15, 1.16). Необходимо особо обратить внимание на то, что при образовании основной системы метода сил недопустимо введение новых связей. Желательно, чтобы основная система была рациональной, т. е. такой, для которой легче строить эпюры внутренних силовых факторов и объем вычислений был наименьшим. Такая система показана на рис. 1.15 (вариант I). Здесь нет необходимости определять опорные реакции, если строить эпюры со свободного (незакрепленного) конца рамы. Рис. 1.16 2.3. Образуем эквивалентную систему путем нагружения основной системы внешними силами и усилиями отброшенных (перерезанных) связей (рис. 1.17). Неизвестные силовые факторы будем обозначать символом Xi, где i – номер неизвестного. Если отброшенные связи запрещают линейные перемещения, то неизвестными являются силы, при запрете угловых смещений – моменты. Если же основная система была получена путем перерезания лишних связей, то равные и противоположные друг другу силы и моменты прикладываются как к правой, так и к левой частям рассеченной системы в местах перерезания. В рассматриваемом примере X1 и X2 представляют собой вертикальную и горизонтальную составляющие реакции шарнирной опоры А. 2.4. Составляем канонические уравнения метода сил, которые выражают в математической форме записи условия эквивалентности основной и заданной систем. Иначе они выражают условия, обозначающие, что относительные перемещения по направлению удаленных лишних связей от совместного действия внешней нагрузки и неизвестных усилий должны быть равны нулю. Для эквивалентной системы рассматриваемого примера на основании принципа независимости действия сил и рис. 1.18 канонические уравнения запишутся в форме где 11 – относительное перемещение в основной системе по направлению лишней неизвестной X1, вызванное этим же усилием; 12 – относительное перемещение по направлению лишней неизвестной Х1, вызванное усилием X2; 1P – относительное перемещение по направлению действия неизвестной X1, вызванное заданной нагрузкой. Рис. 1.18 Физический смысл этих уравнений. Первое уравнение отрицает возможность вертикального перемещения опорного сечения А по направлению лишнего неизвестного X1 от совместного действия заданной нагрузки Р и полных значений неизвестных X1 и X2. Аналогичный смысл имеет и второе уравнение. В указанной форме (1.1) использование уравнений при инженерных расчетах затруднительно, поэтому преобразуем их к новому виду. С учетом того, что для линейных систем справедливо выражение можно записать: где 11 – относительное перемещение в основной системе по направлению действия силы X1 от действия силы X1 1 (рис. 1.19); 21 – относительное перемещение в основной системе по направлению действия силы X2 от действия силы X1 1. Здесь X1 и X2 – действительные значения реакций отброшенных связей. Тогда канонические уравнения метода сил (1.1) запишутся в виде По аналогии для n раз статически неопределимых систем канонические уравнения имеют вид Здесь коэффициенты с одинаковыми индексами называют главными, а называют побочными коэффициентами. Главные коэффициенты всегда положительны. Побочные коэффициенты могут быть положительными, отрицательными и равными нулю. 1P  – называются свободными или грузовыми коэффициентами. 2.5. Определяем коэффициенты канонических уравнений. Эти коэффициенты представляют собой перемещения точек системы в направлении отброшенных связей, следовательно, их можно найти посредством интеграла Мора: Порядок определения коэффициентов: Рис. 1.19 20 а) строим эпюры изгибающих моментов для основной системы от заданной внешней нагрузки P и от единичных усилий отброшенных связей X11 (рис. 1.20); Рис. 1.20 б) вычисляем коэффициенты канонических уравнений. Поскольку рассматриваемая система состоит только из прямолинейных стержней и жесткости стержней в пределах их длин постоянны , то вычисления интеграла Мора производим по способу А.К. Верещагина путем перемножения соответствующих эпюр с использованием формул Симпсона и трапеций: 2.6. Записываем систему канонических уравнений. После подстановки найденных коэффициентов в уравнение (1.3) получаем: Решаем систему уравнений и находим неизвестные усилия, кН: Примечание. Если знак усилия получился отрицательный, то это означает, что действительное усилие (реакция) направлено в противоположную строну, чем усилие Xi, принятое в эквивалентной системе. Таким образом, раскрывается статическая неопределимость системы. 2.7. Строим окончательные (действительные) эпюры внутренних силовых факторов для заданной системы. Построение эпюр можно выполнить двумя способами.  Первый способ Загружаем основную систему заданной нагрузкой и найденными усилиями X1 и X2 (рис. 1.17), после чего строим эпюры М, Q, и N также, как для обычной статически определимой системы. Построенные таким способом эпюры показаны на рис. 1.21, где ординаты эпюры изгибающих моментов отложены со стороны растянутых волокон. Такой метод наиболее удобен для простых систем.   Второй способ Вычисляем значения изгибающих моментов в любом (обычно характерном) сечении на основании принципа независимости действия сил по формуле 22 где k – номер сечения, для которого определяется значение изгибающего момента; n – степень статической неопределимости системы. Рис. 1.21 При этом, если найденное усилие Xi имеет отрицательный знак, то соответствующую эпюру Mi необходимо зеркально отобразить относительно осей стержней. При определении действительных значений изгибающих моментов ординаты моментов в расчетных сечениях берутся из эпюр M1, M2 и MP с учетом их знаков. Знаки моментов в рассматриваемом сечении определяются в зависимости от того, с какой стороны от базовой линии расположены ординаты моментов и от положения точки наблюдателя. В нашем случае принимаем, что точка наблюдателя расположена внутри контура, поэтому за положительные значения моментов принимаются моменты, которые вызывают в расчетном сечении растяжение внутренних волокон, а отрицательные – внешних волокон контура. Например, для сечения Д рамы получаем Аналогично и для других сечений. Окончательная эпюра изгибающих моментов для заданной системы показана на рис. 1.21, а. 23 2.8. Проводим деформационную проверку правильности построения действительной эпюры изгибающих моментов. Смысл деформационной проверки состоит в подтверждении отсутствия перемещений в основной системе в направлении отброшенных (перерезанных) связей при найденных значениях неизвестных усилий. Так, если неизвестные усилия найдены правильно, то для рассматриваемого примера должны удовлетворяться равенства: Если построить эпюру единичных моментов 2то проверку называют проверкой на групповое перемещение (рис. 1.22): Отсутствие перемещения подтверждает правильность решения задачи. Если выполненные расчеты не подтверждают отсутствие перемещений точек основной системы в направлении отброшенных связей, то для выявления ошибки расчета необходимо проверить правильность определения коэффициентов канонических уравнений по формуле При отсутствии равенства в этом уравнении выполняется построчная проверка коэффициентов канонических уравнений. Первая строка: . Если нет ошибки расчета в этой строке, то должно соблюдаться условие: Аналогично можно выполнить проверки 2-й и других строк. При выполнении указанных проверок следует проверить правильность расчета грузовых коэффициентов: 2.9. Строим эпюру поперечных сил Q по эпюре изгибающих моментов М путем последовательного вырезания стержней из заданной системы и рассмотрением их как шарнирно опертых статически определимых балок. По концам стержней прикладываем моменты, значения и направления которых выбираем из эпюры М в соответствующих сечениях. При наличии внешних сил прикладываем их на соответствующих участках. Определяем опорные реакции из условия статического равновесия и строим эпюру Q как обычно для статически определимых балок. Для заданной рамы (рис. 1.15) при построении эпюры поперечных сил для стойки вырезаем участок АВ и в сечении В прикладываем момент В 3 , 56 M P взятый из эпюры действительных моментов М (рис. 1.21, б). Определяем опорные реакции из рассмотрения равновесия 3 P и строим эпюру поперечных сил Q (рис. 1.23). Рис. 1.22 25 Аналогичным образом вырезаем горизонтальный стержень (ригель) ВС, рассматриваем его равновесие и строим эпюру Q для этого участка рамы (рис. 1.24). Переносим эпюры Q для отдельных стержней на задан ную систему. Окончательная эпюра поперечных сил для заданной рамы показана на рис 7.14, б. Построение эпюры поперечных сил по эпюре изгибающих моментов возможно и на основании дифференциальной зависимости: где α – угол наклона прямой, очерчивающей эпюру изгибающих моментов, к базовой линии (оси бруса). Поперечная сила считается положительной, если изгибающий момент возрастает в направлении оси. Для рассматриваемого примера: 2.10. Производим построение эпюры продольных сил N. Рис. 7.16 Рис. 1.24 26 Для этого используем метод вырезания узлов (вырезаем только внеопорные узлы сечениями, бесконечно близкими к узлу) и рассматриваем их равновесие под действием внешней нагрузки (если такова приложена к узлам) и усилий в отброшенных (перерезанных) связях. Вырезаем узел В. Прикладываем к нему поперечные силы, взятые в соответствующих сечениях из эпюры Q (рис. 1.23, б). Узел должен находиться в равновесии (рис. 1.25) под действием поперечных и продольных сил (неизвестных). Определяем неизвестные продольные силы из условия статического равновесия. Эпюра продольных сил показана на рис. 1.23, в. 2.11. Проводим окончательную проверку правильности решения задачи. Система (рама), внеопорный узел или какая-нибудь часть системы должны находиться в равновесии под действием внешней нагрузки и усилий отброшенных (перерезанных) связей. Для заданного примера рассматриваем равновесие рамы, используя уравнения статики (рис. 1.26): Условие равновесия выполняется. Примечания. 1. Если рама имеет несколько внеопорных узлов, то проверкой охватываются все узлы. Рис. 1.25 Рис. 1.26 27 2. При проверке равновесия внеопорного узла необходимо кроме внутренних усилий (M, Q, N), взятых в соответствующих сечениях, приложить еще внешние усилия (сосредоточенные силу и момент), если таковые приложены в узле. В нашем случае нагрузка в узле отсутствует.