Зависимость между моментами инерции при повороте координатных осей

Зависимость между моментами инерции при повороте координатных осей.


 

Положим, что для произвольного сечения (рис. 1.13) моменты инерции относительно координатных осей z и y известны, а также известен центробежный момент инерции Izy. Требуется установить зависимости для моментов инерции относительно осей 11 zy, повернутых на угол  по отношению к исходным осям z и y (рис. 1.13). Будем считать угол  положительным, если поворот координатной системы происходит против хода часовой стрелки. Пусть для данного сечения IzI. yДля решения поставленной задачи найдем зависимость между координатами площадки dA в исходных и повернутых осях. Из рис.1.13 следует: Из треугольника из треугольника С учетом этого получаем Аналогично для координаты y1 получаем Учитывая, что окончательно имеем 1Воспользовавшись полученными зависимостями (1.23), (1.24) и выражениями для моментов инерции сечения (1.8), (1.9) и (1.11), определяем момент инерции относительно новых (повернутых) осей z1 и y1: Аналогично Центробежный момент инерции I относительно повернутых осей определится зависимостью После раскрытия скобок получим Складывая, получаем Сумма моментов инерции относительно взаимно перпендикулярных осей не меняется при их повороте и равна полярному моменту инерции сечения. Вычитая (1.27) из (1.26) получаем Формула (1.30) может служить для вычисления центробежного момента инерции относительно осей z и y , по известным моментам инерции относительно осей z , y и z1, y1, а формула (1.29) – для проверки вычислений моментов инерции сложных сечений. 1.8. Главные оси и главные моменты инерции сечения С изменением угла  (см. рис. 1.13) меняются и моменты инерции. При некоторых значениях угла 0 моменты инерции имеют экстремальные значения. Осевые моменты инерции, имеющие максимальные и минимальные значения называются главными осевыми моментами инерции сечения. Оси, относительно которых осевые моменты инерции имеют максимальные и минимальные значения, являются главными осями инерции. С другой стороны, как уже отмечалось выше, главные оси, это оси относительно которых центробежный момент инерции сечения равен нулю. Для определения положения главных осей для сечений произвольной формы возьмём первую производную по  от I и приравняем ее нулю: Откуда Эта формула определяет положения двух осей, относительно одной из которых осевой момент инерции максимален, а относительно другой – минимален. Необходимо заметить, что формула (1.31) может быть получена из (1.28), приравняв ее нулю. Если подставить значения угла, определяемого из выражения (1.31), в (1.26) и (1.27), то после преобразования получим формулы, определяющие главные осевые моменты инерции сечения По своей структуре эта формула аналогична формуле (4.12), определяющей главные напряжения (см. разд. 4.3). Если IzI, yто, исходя из исследований второй производной , вытекает, что максимальный момент инерции Imax имеет место относительно главной оси, повернутой на угол по отношению к оси z, а минимальный момент инерции – относительно другой главной оси, расположенной под углом 0 Если II, yто все меняется наоборот. Значения главных моментов инерции Imax и I могут быть вычислены и по зависимостям (1.26) и (1.27), если подставить в них вместо  значения . При этом сам собой решается вопрос: относительно какой главной оси получается максимальный момент инерции и относительно какой оси – минимальный? Необходимо обратить внимание, что если для сечения главные центральные моменты инерции относительно осей z и y равны, то у этого сечения любая центральная ось является главной и все главные центральные моменты инерции одинаковы (круг, квадрат, шестиугольник, равносторонний треугольник и др.). Это легко устанавливается из зависимостей (1.26), (1.27) и (1.28). Действительно, предположим, что для какого-то сечения оси z и y ─ главные центральные оси и кроме того I. yТогда из формул (1.26) и (1.27) получим, что Izy , 1а из формулы (1.28) убедимся, что 11 е. любые оси являются главными центральными осями инерции такой фигуры. 1.9. Понятие о радиусе инерции Момент инерции сечения относительно какой-либо оси можно представить в виде произведения площади сечения на квадрат некоторой величины, называемой радиусом инерции площади сечения где iz ─ радиус инерции относительно оси z . Тогда из (1.33) следует: Главным центральным осям инерции соответствуют главные радиусы инерции: 1.10. Моменты сопротивления Различают осевые и полярные моменты сопротивления. 1. Осевым моментом сопротивления называется отношение момента инерции относительно данной оси к расстоянию до наиболее удаленной точки поперечного сечения от этой оси. Осевой момент сопротивления относительно оси z: а относительно оси y : max где ymax и zmax─ соответственно расстояния от главных центральных осей z и y до точек наиболее удаленных от них. При расчетах используются главные центральные оси инерции и главные центральные моменты, поэтому под Iz и Iy в формулах (1.36) и (1.37) будем понимать главные центральные моменты инерции сечения. Рассмотрим вычисление моментов сопротивления некоторых простых сечений. 1. Прямоугольник (см. рис. 1.2): 2. Круг (см. рис. 1.8): 3. Трубчатое сечение кольцевое (рис. 1.14): . Для прокатных профилей моменты сопротивления приводятся в таблицах сортамента и в их определении нет необходимости (см. прил. 24 – 27). 2. Полярным моментом сопротивления называется отношение полярного момента инерции к расстоянию от полюса до наиболее удаленной точки сечения max 30 В качестве полюса обычно принимается центр тяжести сечения. Например, для круглого сплошного сечения (рис. 1.14): Для трубчатого круглого сечения . Осевые моменты сопротивления Wz и Wy характеризуют чисто с геометрической стороны сопротивляемость стержня (балки) деформации изгиба, а полярный момент сопротивления W сопротивляемость кручению.